Abstract

RDF has gained great interest in both academia and industry as an important language to describe graph data. With the increasing amount of RDF data which is becoming available, efficient and scalable nowadays has become a challenge to achieve the semantic web vision. The RDF model has attracted the attention of the database community and researchers to propose various methods to store and query the RDF data efficiently. However, current RDF database suffer from several problems, like, poor performance behavior for querying RDF data. This paper provides a comparative analysis made on selective RDF databases storages. It provides a precise study on the various means of having a persistent storage and access of RDF graphs. Recently there has been a major development on initiatives in query processing, access protocols and triple-store technologies. In the evaluation the use of a non-memory and a non-native store Sesame, a native store Allegro graph and Jena API a main-memory based RDF storage system, specifically designed to support fast semantic association discovery. The framework and applications with the ability to store and to query RDF data are analyzed and investigated. Moreover, this paper gives an overview of the features of techniques for storing RDF data and the main purpose of study is to find suitable
storage system to store RDF data.

References

- http://jena.apache.org/about_jena/architecture.html
- http://www.franz.com/agraph/allegrograph
- An Evaluation of Triple-Store Technologies for Large Data Stores, Kurt Rohloff, Mike Dean, Ian Emmons, Dorene Ryder and John Sumner.
- Kevin Wilkinson, Carig Sayers, Harumi Kuno, Dave Reynolds, "Efficient RDF storage and retrieve in Jena2", Enterprise system and data management laboratory.
- Jeen Broekstra, Arjohn Kampman, Frank van Harmelen, "Sesame: An architecture for storing and quering RDF data and schema information", Vrije university Amsterdam.
- David C. Faye, Oliver crue, Guillaume BLIN, "a survey of RDF storage approaches", Arima Journal
- Florian Stegmier, Udo Grobner, Mario Doller, Harald Kosch, Gero Baese, "Evaluation of current RDF database solutions", Chair of distributed information systems University of Passau.
- YingHong Liao, ChuenTsai Sun, "An educational genetic algorithms learning tool", http://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm.
- Performance of native SPARQL query processors, UPPSALA University, Shridevika Maharajan.
- Resource Description Framework (RDF). http://www.w3.org/RDF/
- http://swat.cse.lehigh.edu/projects/lubm/
- http://www.w3.org/wiki/RdfStoreBenchmarking
- Alisdair Owens, An Investigation into Improving RDF Store Performance, March 2009.
- Olivier Cure, David Faye, Guillaume Blin, Towards a better insight of RDF triples Ontology-guided Storage system abilities, Jun 2013.
- http://jena.apache.org/documentation/inference/#api
- http://www.w3.org/wiki/LargeTripleStores

Index Terms

Computer Science Information Sciences

Keywords

W3C API RDF RDFS Native Store OWL SPARQL DAML OIL API
SDB/TDB