CFP last date
22 April 2024
Reseach Article

Docking Studies on Cyclooxygenases-2 Inhibitors based On Potential Ligand Binding Sites

by Karima Nekkaz, Ismail Daoud, Kawther Younes, Salima Merghache, Naouel Khebichat, Said Ghalem
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 87 - Number 1
Year of Publication: 2014
Authors: Karima Nekkaz, Ismail Daoud, Kawther Younes, Salima Merghache, Naouel Khebichat, Said Ghalem
10.5120/15173-3086

Karima Nekkaz, Ismail Daoud, Kawther Younes, Salima Merghache, Naouel Khebichat, Said Ghalem . Docking Studies on Cyclooxygenases-2 Inhibitors based On Potential Ligand Binding Sites. International Journal of Computer Applications. 87, 1 ( February 2014), 27-34. DOI=10.5120/15173-3086

@article{ 10.5120/15173-3086,
author = { Karima Nekkaz, Ismail Daoud, Kawther Younes, Salima Merghache, Naouel Khebichat, Said Ghalem },
title = { Docking Studies on Cyclooxygenases-2 Inhibitors based On Potential Ligand Binding Sites },
journal = { International Journal of Computer Applications },
issue_date = { February 2014 },
volume = { 87 },
number = { 1 },
month = { February },
year = { 2014 },
issn = { 0975-8887 },
pages = { 27-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume87/number1/15173-3086/ },
doi = { 10.5120/15173-3086 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:04:49.035984+05:30
%A Karima Nekkaz
%A Ismail Daoud
%A Kawther Younes
%A Salima Merghache
%A Naouel Khebichat
%A Said Ghalem
%T Docking Studies on Cyclooxygenases-2 Inhibitors based On Potential Ligand Binding Sites
%J International Journal of Computer Applications
%@ 0975-8887
%V 87
%N 1
%P 27-34
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the last years, the development of the drug for the treatment of inflammation is very fast. The inflammation is a first-rate example of a disease that symbolizes turmoil in normal host defense systems. COX-2 is an oxido-reductase having a role in prostaglandin biosynthesis, inflammatory responses and in cardiovascular events. COX-2 has gained special focus on research since past few decades. The compounds isolated from plants have good inhibitory effects against cyclooxygenase. In this study, Molecular modeling and docking analysis were used to predict and understand interactions between COX-2 and some compounds isolated from Artemisia arborescensL. The approach is applicable in engineering 3D structures of enzymatic models, and studying interactions of active site residues with ligands show that the three compounds: L9, L8 and L4 give the best results, so they may be effective as the potential inhibitor compound against COX-2 protein and can be evaluated as anti-inflammatory drug molecule using clinical trials.

References
  1. Rita de C. S. Sá , Luciana N. A and Damião P. S. 2013. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules, 18, 1227-1254.
  2. De Sousa D. P. 2012. Medicinal Essential Oils: Chemical, Pharmacological and Therapeutic Aspects, 1st ed. ; Nova Science Publishers: New York, NY, USA; p. 236.
  3. Santos, F. A and Rao, V. S. N. 2000. Anti-inflammatory and antinociceptive effects of 1,8-cineole aterpenoid oxide present in many plant essential oils. Phytother. Res, 14, 240–244.
  4. Valério D. A. R, Cunha T. M, Arakawa N. S, Lemos H. P, da Costa F. B, Parada C. A, Ferreira S. H, Cunha F. Q and Verri J. W. A. 2007. Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: Inhibition of cytokine production-dependent mechanism. Eur. J. Pharmacol. , 562, 155–163.
  5. Juergens U. R and Stober M. V. 1998. The anti-inflammatory activity of l-menthol compared to mint oil in human monocytes in vitro: A novel perspective for its therapeutic use in inflammatory diseases. Eur. J. Med. Res. , 3, 539–545.
  6. Wu X, Li X, Xiao F, Zhang Z, Xu Z and Wang H. 2004. Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomumvillosum. Zhong Yao Cai, 27, 438–439.
  7. Ahameethunisa A. R and Hopper W. 2010. Antibacteri al activity of Artemisia nilagirica l eaf extracts against clinical and phytopathogenic bacteria. BMC C omplement . Altern. Med. 1 0: 6.
  8. Jeon D. 2007. Chemical composition and anti bacterial activity against oral bacteria by essential oil of Artemisia iwayomogi. J . Bacteriol. Virol. 37 (3): 1 29–1 36.
  9. Nezhadali A, Akbarpour M, Zarrabi S. 2008. Chemical composition of the essential oil from the aerial parts of Artemisia herba. E. J. Chem. 5(3):557–561.
  10. Gehan H. H, Ghaneya S. H, Nahla A. F and Amal Y, 2011. , Design, Synthesis, and Docking Studies of Novel Diarylpyrazoline and Diarylisoxazoline Derivatives of Expected Anti inflammatory, and Analgesic Activities. , Life Science Journal, Volume 8, Issue 1, 2011.
  11. Kurumbail R. G, Kiefer J. R and Marnett L. J. 2001. Cyclooxygenase enzymes: catalysis and inhibition. Curr. Opin. Struct. Biol. , 11: 752-60.
  12. Marnett L. J. 2000. Cyclooxygenase mechanisms. Curr. Opin. Chem. Biol. 4, 545-52.
  13. Fitzpatrick F. A. 2004. Cyclooxygenase enzymes: regulation and function. Curr. Pharm. Des. , 10: 577-88.
  14. Saranyah K. , Sukesh. K. , and Dinesh Kumar K. Lilly M. Saleena. 2011. Structure Based Pharmacophore Modeling and Virtual Screening for Identification of Novel Inhibitor for Cyclooxygenase-2, International Conference on Bioscience, Biochemistry and Bioinformatics. IPCBEE. , 5 : 373- 377.
  15. Saranyah K, Sukesh K, Dinesh Kumar K and Lilly M. S. 2011. Structure Based Pharmacophore Modeling and Virtual Screening for Identification of Novel Inhibitor for Cyclooxygenase-2,International Conference on Bioscience, Biochemistry and Bioinformatics, 5:1-5.
  16. Gehan H. H, Ghaneya S. H, Nahla A. F and Amal Y. 2011. Design, Synthesis, and Docking Studies of Novel Diarylpyrazoline and Diarylisoxazoline Derivatives of Expected Anti-inflammatory, and Analgesic Activities, Life Science Journal, Volume 8, Issue 1.
  17. Adinarayana K. P. S, Ashoka, R. P and Ajay B. P. 2012. Structural Studies on Docking Selective COX-2 Inhibitors, Journal of Bioinformatics &Research , 1(1): 21-26.
  18. Younes K, Merghache S, Djabou N, Merghache D, Muselli A, Tabti1 B and Costa J. 2012. Chemical composition, antibacterial and antioxidant activities of a new essential oil chemotype of Algerian Artemisia arborescensL. African Journal of Pharmacy and Pharmacology; 6(42), 2912-2921.
  19. Arômes library of Laboratory of Chemistry of Natural Products (1987- 2011). University of Corse, Corte, France. UMR CNRS. p 6134.
  20. König W. A, Hochmuth D. H and Joulain D. 2001. Terpenoids and related constituents of essential oils. Library of Mass Finder 2. 1, University of Hamburg, Institute of Organic Chemistry, Hamburg, Germany.
  21. Adams R. P. 2001. Identification of Essential Oil Components by Gas Chromatography / Quadrupole Mass Spectroscopy. Allured Publishing. Carol Stream, IL, USA.
  22. Velasco-Negueruela A, Pérez-Alonso M. J, Palà-Paùl J, Inigo A and Lopez G. 2002. Leaf essential oils of JuniperusnavicularisGandoger. Bot. Complutensis, 26:85–91.
  23. Dabiri M and Sefidkon F. 2003. Chemical composition of the essential oil of Nepetaracemosa L am. From Iran. FlavourFragr. J. 18:157–158.
  24. Bendimerad N, Taleb S. A, Benabadji A. B, Fernandez X, Valette L and Lizzani- Cuvelier L. 2005. Composition and antibacterial activity of Pseudocytisusintergrifolius (Salisb). essential oil from Algeria. J. Agric. Food Chem. 53:2947–2952.
  25. Cha J. D. 2007. Chemical composition and antibacterial activity against oral bacteria by essential oil of Artemisia iwayomogi. J. Bacteriol. Virol. 37(3):129–136.
  26. Dib M. A, Djabou N, Desjobert J. M, Allali H, Tabti B, Muselli A and Costa J. 2010. Characterization of volatile compounds of DaucuscrinitusDesf. Headspace solid phase microextraction as alternative technique to hydrodistillation. Chem. Cent. J. 4(16):1–15.
  27. Khamsan S, Liawruangrath B, Liawruangrath S, Teerawutkulrag A, Pyne S. G and Garson M. J. 2011. Antimalarial, anticancer, antimicrobial activities and chemical constituents of essential oil from the aerial parts of CyperuskyllingiaEndl. Rec. Nat. Prod. 5(4):324–327.
  28. NIST (National Institute of Standards and Technology) (1999). PC Version 1. 7 of the NIST/EPA/NIH Mass Spectral Library Perkin Elmer Corporation, Norwalk, CT.
  29. Mc Lafferty F. W and Stauffer D. B. 1988. The Wiley/NBS Registry of Mass Spectral Data. Wiley-Interscience, New York. p 4.
  30. Mc Lafferty F. W and Stauffer D. B. 1994. Wiley Registry of Mass Spectral Data. Mass Spectrometry Library Search System, Bench-Top/PBM version 3. 10d, Palisade, Newfield. p 6.
  31. Hochmuth D. 2006. Mass Spectral Library "Terpenoids and related constituents of essential oils". Library of Mass Finder 3. 0, Hamburg, Germany.
  32. 1CX2: 3-dimensional structure downloaded from http://www. rcsb. org/pdb .
  33. ISIS Draw, a 2-dimensional chemical molecule drawing software: http://www. mdli. com/
  34. Stewart J. J. P. 2007. Optimization of parameters for semi-empirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model; 13(12): 1173-213.
  35. Labanowski J. K and Andzelm J. W. 1991. editors. Density functional methods in chemistry. New York: Springer Verlag;,p. 443.
  36. Baker J. 1986. An algorithm for the location of transition states. J ComputChem; 7(4): 385-95.
  37. Schlegel H. B. 1994. Editor. Modern electronic structure theory: geometry optimization on potential energy surfaces. Singapore: World Scientific.
  38. Hehre W. J, Radom L, Schleyer P. V. R and Pople J. A. 1986. Ab initio molecular orbital theory. New York: Wiley.
  39. Hariharan P. C, Pople J. A. 1973. The influence of polarization functions on molecular orbital hydrogenation energies. TheorChimActa; 28(3): 213-22.
  40. Becke A. D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A; 38(6): 3098-100.
  41. Becke A. D. 1993. A new mixing of HartreeeFock and local density-functional theories. J. Chem. Phys; 98(3): 1372-7.
  42. Lee C, Yang W and Parr R. G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B; 37(4):785-9.
  43. Frisch M. J, Trucks G. W, Schlegel H. B, Scuseria G. E, Robb M. A and Cheeseman J. R, et al. 2004. Gaussian 03, Revision D. 01. Wallingford, CT: Gaussian, Inc.
  44. Ismail Daoud, Mourad Mesmoudi, Said Ghalem, 2013. MM/QM study: Interactions of copper(II) and mercury(II) with food dyes in aqueous solutions. , 4) 4 9-5 6.
  45. da Cunha E. F. F, Martins R. C. A, Albuquerque M. G. 2004. LIV-3D-QSAR model for estrogen receptor ligands. J Mol Mod; 10(5): 297–304.
  46. Elaine F. F, da Edilaine F . B, Aline A. O and Teodorico C. R. 2010. Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors. J BiomStructDyn; 27(5): 619–625.
  47. Ramalho T. C, Rocha M. V. J, da Cunha E. F. F and Freitas M. P. 2009. The search for new COX-2 inhibitors. Expert OpinTher Pat; 19(9): 1193–1228.
  48. Thomsen R and Christensen M. H. 2006. MolDock: a new technique for highaccuracy molecular docking. J Med Chem; 49(11): 3315-3321.
  49. Schulz H, Dale E, Karimi-Nejad Y and Oefner C. 2009. Structure of human endothe-linonverting enzyme I complexed with phosphoramidon. J MolBiol; 385(1): 178–187.
Index Terms

Computer Science
Information Sciences

Keywords

Anti-inflammation COX-2 Cycloprodigiosin Molecular docking Artemisia arborescensL Interactions