Abstract

This paper presents the Load frequency control (LFC) of a multi-source power system with Redox flow batteries (RFB). The power system comprises non-reheat thermal, hydro and gas generating units. RFB is integrated to the LFC system to improve the dynamic responses. The proportional plus integral (PI) controller is designed using the PSO technique. Dynamic responses are obtained by giving 1% step load perturbation (SLP) in the area. Further, to show the robustness of the controller, the dynamic responses are obtained by varying the SLP from 1% to 3%. Dynamic responses obtained in all the cases, satisfy the LFC requirements. PSO technique gives good convergence characteristics and promising computational results.

References

- Bevrani H. Robust power system frequency control. New York: Springer; 2009.
- Parmar KPS, Majhi S, Kothari DP. Multi-area load frequency control in a power system using optimal output feedback method. In: IEEE conference on proceedings, PEDES. New Delhi, India; 2010.
- P Bhatt, SP Ghoshal, R Roy. Load frequency stabilization by coordinated control of Thyristor controlled phase shifters and superconducting magnetic energy storage for three types of interconnected two-area power systems. Electrical Power and Energy Systems, vol.
Load Frequency Control of Multi-Source Power System with Redox Flow Batteries: An Analysis

32, pp. 1111–24, 2010
- The MathWoks, Inc. MATLAB control toolbox, version 7.13 (R2011b), MATLAB software

Index Terms
Keywords
Controller Particle swarm Optimization Load Frequency Control