Abstract

Multi-objective optimisation is a proven well known parameter tuning technique in complex power system problems. It is especially suited to solve complex transmission network expansion planning. This paper proposes a practical method for transmission network expansion planning by bacterial foraging technique. The electricity industry has always been interested in expanding investment in the transmission sector of the industry. As load demand increases and generation expands to meet the need, transmission expansion becomes important in order to increase social welfare by reducing total system operating cost, and to make the system more reliable. In this context, two objectives: investment cost and network adequacy restrictions are considered to overcome the drawbacks of conventional mathematical optimization method in arriving at local optimum and dimension disasters, we introduced the bacterial foraging technique into transmission network optimal planning for the first time, from
which the optimal scheme is generated. The bacterial foraging is used as the optimization tool
to obtain the Pareto approximation set solutions. The proposed algorithm is implemented on
typical IEEE 6 bus systems and performance is assessed by statistical test.

Reference

evaluation of voltage level in transmission network expansion planning using GA”, Energy
- Ranjithkumar, K., Sakthibala, D., and Dr.Palaniswami, S., “Efficiency Optimization of
Induction Motor Drive Using Soft Computing Techniques”, International journal of computer
applications, Vol.49, No.5, pp. 1179-1125.
- Choi, J., Mount, T., and Thomas, R. 2006,” Transmission system expansion plans in
view point of deterministic probabilistic and security reliability criteria”, Proc. the 39th
expansion planning considering uncertainness in demand”, Proc. IEEE Power Engineering
expansion planning and long- term marginal costs computation”, IEEE Trans. Power Systems,
Vol. 20, No. 3, pp. 1631-1639.
- Geoff Leyland. 2002. A brief introduction to evolutionary algorithm and multi
objective optimization.
programming model for transmission expansion planning with generation location selection”,
- Abdelaziz, A.R. 2000,” Genetic algorithm-based power transmission expansion planning”,
Proc. the 7th IEEE International Conference on Electronics, Circuits and Systems,
1168-1174.
- Chanda, R. S., and Bhattacharjee, P. K.. 1998," A reliability approach to transmission
expansion planning using fuzzy fault-tree model", Electric Power Systems Research, Vol. 45,
No. 2 , pp. 101-108.
planning by an extended genetic algorithm”, IEE Proc.Generation, Transmission and
annealing applied to long term transmission network expansion planning”, IEEE Trans. Power
- Ganguly, S., Sahoo, N. C., and D. Das.,” Multi-Objective Planning of Electrical
Distribution Systems using Particle Swarm Optimization", Department of Electrical Engineering,
Multi Objective Optimization for Transmission Network Expansion Planning using Modified Bacterial Foraging Technique

Indian Institute of Technology, Kharagpur.
- Alseddiqui, J., and Thomas, R.J. “Transmission Expansion Planning Using Multi-Objective Optimization”.
- Heidita boada, A., Fatema baheranwala, Coid David, W., and Naruemon wattanapongsakorn,”A Practical solution for multi objective optimization: an application to system reliability design”, Department of industrial and system engineering, Rutgers University, Piscataway, USA.
- Hans-director joos., Johann Bals., Gertjan Looye., and Klaus chnepper Andras varga,”A multi objective optimization based software environment for control systems design”, DLR–German aerospace center, webling.
- Mantway, A. H., and Mohammad Al-Muhaini,” Multi-Objective BPSO Algorithm for Distribution System Expansion Planning Including Distributed Generation”.

Index Terms

Computer Science \[\text{Power Systems}\]

Key words

TNEP \[\text{multi-objective optimization (MOP)}\] \[\text{network}\]

adequacy restrictions

operational cost

bacterial foraging