Simplifying Designing Techniques: To Design DFA that Accept Strings over $\Sigma=\{a, b\}$ Having at least x Number of a and y Number of b

Abstract

Being a faculty of Theory of computation it had been observed by me that students face difficulty while designing different DFA. It is always being an issue for the students to understand. This paper present an easy way of learning and designing a Deterministic finite automata that accept strings over input symbol $\{a, b\}$ having atleast x number of a & y number of b. Objective of the research is to make the method of teaching learning easier, simpler and understandable for students. In this paper we develop an algorithm to design finite automata that accepts strings of input $\{a, b\}$ having atleast x number of a & y number of b.

References

Simplifying Designing Techniques: To Design DFA that Accept Strings over $\Sigma=\{a, b\}$ Having at least x Number of a and y Number of b. in IEEE Catalogue Number: CFP1362U-CDR, March, 2013

- Danish Ather, Raghuraj Singh, Vinodani Katiyar. An Efficient Algorithm to Design DFA That Accept Strings Over Input Symbol a, b Having exactly x Number of a & y Number of b. in JNIS World Science Publishers, U. S. A. Feb 2013
- Danish Ather, Raghuraj Singh, Vinodani Katiyar. An Efficient Algorithm to Design DFA That Accept Strings Over Input Symbol a, b Having Atmost x Number of a & y Number of b. JNIS World Science Publishers, U. S. A. Feb 2013

Index Terms

Computer Science Information Sciences

Keywords

DFA Transition Table Transition Graph(TG) Input Symbol