Abstract

As in a complex growing mesh technologies field, autonomic computing is an auspicious new approach for building large scale distributed systems without assistance of any human interaction. This paradigm provides an environment, which has the potential to manage itself and adapt to the changes. The main objective of autonomic environment is to render the system administrator free by achieving self management properties at a higher level. The main characteristics of autonomic systems, which are to be achieved, are Self-healing, Self-optimizing, Self-protecting and Self-configuring. This paper describes the architecture of stable autonomic systems.

References

- R. Want, T. Pering, D. Tennenhouse, "Comparing autonomic and proactive..."
- B. Foote, J. Yoder, "Big Ball of Mud;", in Pattern Languages of Program Design 4, ed. N. Harrison, B. Foote, H. Rohnert, Addison-Wesley, 2000.
- Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (Ease'07) 0-7695-2809-0/07
- T. De Wolf and T. Holvoet. "Evaluation and comparison of decentralized autonomic computing systems;" IN Department of computer and science.
- Etienne Gandrille, Catherine Hamon, Philippe Lalanda, "Design and Runtime Architectures to Support Autonomic Management;" 7th IEEE International Symposium on MESOCA 2013.
- Tomasz Haupt, "Towards Mediation-Based Self-Healing of Data Driven Business Processes;" SEAMS 2012.
- Mazeiar Salehie, Ladan Tahvildari, "Autonomic Computing : Emerging Trends and open Problems;" DEAS''05 St Louis, Missouri USA Copyright 2005
Keywords

Autonomic computing architecture managed elements autonomic element.