Abstract

Reversible logic plays an important role in emerging low power designs and quantum computing. This paper presents an efficient way to realize reversible arithmetic circuits especially targeting toward reversible arithmetic logic unit (RALU). In literature for reversible logic, not a significant advancement is found in integrating both logical and arithmetical functions, commonly known as arithmetic logic unit (ALU), a key feature of any computing system architecture. Here, this work presents a novel reversible arithmetic logic unit (ALU) performing basic functions similar to classical ALU such as addition, subtraction, AND, OR and XOR operations. Additional functions such as, NAND, NOR, XNOR and logical functions with single input inverted, overflow detection and comparison can also be performed with this design. The integration of these operations in single module using less number of control signals is not available in any of existing approaches. The design and analysis based on different parameters of reversible circuits – number of gates, garbage bits and quantum cost as well as simulation results are presented here. The proposed design offers efficient programmability and more flexibility than other methods.
Reversible Architecture of Computer Arithmetic

- H. Thapliyal, M. B Srinivas, "Novel Reversible TSG gate and its application for
designing reversible carry look ahead adder and other adder architectures", Proc. of 10th
Asia-pacific computer system architecture Conference, 3740, 2005.
- M. Haghparast and K. Navi, "Design of a novel reversible multiplier circuit using
- M. Ehsanpour, P. Moallem, A. Vafaei, "Design of a Novel Reversible Multiplier
Circuit Using Modified Full Adder", 2010 Intl. Conf. on Computer Design and
Applications, vol. 3.
- H. Thapliyal, M. B Srinivas and H. R. Arabnia, "Reversible Logic Synthesis of Half,
Full and Parallel Subtractors", Proc. of Intl. Conf. on embedded Sys. and App., June
- H. Thapliyal and N. Ranganathan, "Design of Efficient Binary Subtractors Based
on VLSI, pp. 229-234.
- V. Vedral, A. Barenco and A Ekert, "Quantum Networks for Elementary
- S. A. Cuccaro, T. G. Draper, S. A. Kutin and D. P. Moulton, "A new Quantum
- Y. Takahashi, S. Tani and N. Kunihiro, "Quantum Addition Circuits and
- I. L. Markov and M. Saeedi, "Constant-Optimized Quantum Circuits for Modular
no. 5&6, pp. 872-890, 2012.
Architecture and its Reversible Logic Design", Reversible Computation, Lecture Notes in
- R. Aradhaya, K. N. Muralidhara, B. Kumar, "Design of Low Power Arithmetic
Unit Based on Reversible Logic", International Journal of VLSI and Signal Processing
- M. K. Thomsen, R. Gluck, H. B. Axelsen, "Reversible arithmetic logic unit for
- M. Morrison and N. Ranganathan, "Design of a Reversible ALU based on Novel
Programmable Reversible Logic Gate Structures", IEEE Computer Society Annual
- T. Toffoli, "Reversible Computing", Technical Memo, MIT/LCS/TM-151,
Boston 1980.
- E. Fredkin, T. Toffoli, "Conservative Logic", Int. J. Theor. Physics, vol. 21,
no. 3-4, pp. 219-253, 1982.
- S. Sultana, K. Radecka, "Reversible adder/subtractor with overflow
Reversible Architecture of Computer Arithmetic

Index Terms

Computer Science

Circuits And Systems

Keywords

Arithmetic logic unit Reversible logic Reversible controlled adder/subtractor

Quantum cost.