Abstract

To study the latest cellular mobile communication standard and protocols, there should be a publicly available simulation environment to support researchers of the world to do testing, reformulation of the existing technologies and optimization on a common well known platform [1],[2],[3]. A possible solution is offered by open source simulation environment from TUWIEN that supports link and system level simulations of the Universal Mobile Telecommunication System (UMTS) Long-Term Evolution (LTE) and which is specifically designed to accentuate reproducibility [1]. In this paper, we pipelined execution of the LTE algorithms on blade servers to achieve minimum latency caused during communication [4]. And then the pipeline model is compared in different context including a single (multi-core) processor, multiple processors on a single board, multiple processors on different boards on a single server and multiple processors on two different servers and etc. Moreover, we obtained the ratio of the communication and the computation time in the execution of LTE algorithms in the TUWIEN simulator by profiling which provides the best preferable configuration for the LTE algorithms. Finally, LTE processes are distributed to desirable processors by using OpenMPI to decrease latency.
- Christian Mehlführer, Josep Colom Colom Ikuno, Michal Šimko, Stefan Schwarz, Martin Wrulich and Markus Rupp 2011. The Vienna LTE simulators – Enabling reproducibility in wireless communications research
- Markus V. S. Lima1, Camila M. G. Gussen1, Breno N. Espindola1, Tadeu N. Ferreira2, Wallace A. Martins, Paulo S. R. Diniz1. OPEN-SOURCE PHYSICAL-LAYER SIMULATOR FOR LTE SYSTEMS in 2012
- Inkeun Cho*, Tomasz Patykt, David Guevorkian+, Jarmo Takala§, and Shuvra Bhauacharyya. Pipelined FFT for Wireless Communications Supporting 128-2048 / 1536 -Point Transforms
 - Dipl. -Ing Michal Šimko, Dipl. -Ing. Mag. Dr. techn. Sebastian Caban, March 2011. Implementation of LTE mini receiver on GPUs.
 - Agilent Technologies, 2009. 3GPP Long Term Evolution, System overview, product development and test challenges.
- Julien Heulot, Jani Boutellier, Maxime Pelcat, Jean-François Nezan, Slaheddine Aridhi. Applying the Adaptive Hybrid Flow-Shop Scheduling Method to Schedule a 3GPP LTE Physical Layer Algorithm onto Many-Core Digital Signal Processors in 2013
- Maofei He, Jiajie Zhang, Wenhua Fan, Zhiyi Yu*, Xiaoyang Zeng. A Channel Estimator for LTE Downlink Mapped on a Multi-Core Processor Platform
- Anas Showk, Attila Bilgic. A Novel Scheduling Methodology Based on SDL Process Migration for the LTE Higher Layer Protocol on Multi-Core Mobile Terminals
 - Real-Time Systems and Software by Alan C. Shaw

Index Terms

Computer Science

Algorithms

Keywords

Pipeline model, TUWIEN LTE simulator