Abstract

This paper deals with the MIMO-OFDM technique that candidate with the fourth generation (4G) of the wireless communication systems, this technique can provide high data rate transmission without increasing transmit power and expanding bandwidth, also it can efficiently use space resources and has a bright future. This paper presents the channel coding assisted STBC-OFDM systems, and employs the Coded Modulation techniques (CM), since the signal bandwidth available for wireless communications is limited. Furthermore, a non-binary Turbo Trellis Coded Modulation (TTCM) decoder-based multidimensional MAP algorithm-assisted G2 STBC-OFDM is design and implemented. The idea of Non-binary codes has been extended for symbols de?ned over rings of integers, which outperform binary codes with only a small increase in decoding complexity. The simulation results show that the performance of the TTCM decoding algorithm outperforms the binary decoding methods and suitable to deal with error control coding of the STBC-OFDM schemes.

References

- L. Hanzo and B. Choi, ‘Near-instantaneously adaptive HSDPA-style OFDM and
A High Spectral Efficient Non-Binary TTCM-assisted G2 STBC-OFDM for 4G Systems

- European Telecommunications Standards Institute, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television (DVB-T), ETSI ETS 300 744 ed. 1, March 1997.
- European Telecommunications Standards Institute, Radio Equipment and Systems (RES); High Performance Radio Local Area Network (HIPERLAN) Type 1; Functional specification, ETSI ETS 300 652 ed. 1, October 1996.
A High Spectral Efficient Non-Binary TTCM-assisted G2 STBC-OFDM for 4G Systems


Index Terms

Computer Science

Wireless

Keywords
Turbo codes TTCM non-binary error correcting codes Rings of integers MIMO OFDM MIMO-OFDM

STBC

4G.