Abstract

Linear adaptive equalizers are widely used in wireless communication systems in order to reduce the effects of the channel distortion. Various researchers have used linear block equalizers for different modulations techniques. In this paper the BER performance of different M-PSK and M-QAM modulations with the block based LMS and RLS linear equalizers are compared over the flat and frequency selective Rayleigh fading channel. For achieving better performance the Rayleigh channel is modeled with four multipath channels and normalized channel impulse response under the presence of AWGN noise. The maximum Doppler shifts frequencies are varied for evaluating the performance of the equalizers. Using the normalized channel impulse response improves the BER performance of the communication system for the higher values of M as 512 and 1024. Transmitted and received constellation diagrams are also compared for different equalizers. Performance is also compared for the different equalizer weights and block sizes.

References
- S C Lin, "Performance analysis of decision feedback equalizer for cellular mobile radio co-channel interference and fading"; IET Communication Vol. 3, Issue. 1, pp. 100-114 2009,
- Yu Gong, Xia Hong and Khalid F. Abu-Salim, "Adaptive MMSE equalizer with optimum Tap length and Decision delay"; IEE 2010
- Kiran Kuch, "Limiting Behavior of ZF/MMSE Linear Equalizers in Wideband Channels with Frequency Selective Fading"; IEEE Communications Letters, Vol. 16, No. 6, June 2012
- Suneeta V. Budihal, Priyatamkumar, R. M. Banakar, "Performance analysis of Adaptive Decision Feedback Turbo Equalization (ADFTE) using Recursive Least Square (RLS) Algorithm over Least Mean Square (LMS) Algorithm"; IEEE International Conference on
Computational Intelligence and Multimedia Applications 2007

Index Terms

Computer Science

Signal Processing

Keywords

Linear Equalizers LMS RLS algorithm Normalized channel impulse response
Bit error rate.