Abstract

One of the most important applications of distributed systems is enabling resource sharing between systems. In such environments, if a sequence of procedures to control resource allocation is not possible to create a deadlock exists. Deadlock problem for a distributed database system that uses locking as a concurrency control algorithm, as there are inherent. The following new rule for the modeling of the proposed method using colored Petri nets is presented. In the model proposed the new rules for mapping TWFG with colored Petri nets for modeling the deadlocks detection and resolve. Colored Petri net is considered one of the most widely used formal methods capable of modeling a wide variety of distributed systems are concurrent. A lot of work being done to define the concurrency execution of transactions in Petri nets is that none of these methods of communication with how mapping TWFG with colored Petri nets for modeling the deadlocks detection and resolve.

References

- B. M. Monjurul Alom, Frans Alexander Henskens and Michael Richard Hannaford, "Optimization of Detected Deadlock Views of Distributed Database", First
- Himanshi Grover and Suresh Kumar, "ANALYSIS OF DEADLOCK DETECTION..."
AND RESOLUTION TECHNIQUES IN DISTRIBUTED DATABASE ENVIRONMENT”;
- Srinivasan Selvaraj and Rajaram Ramasamy, “An Efficient Detection and Resolution of Generalized Deadlocks in Distributed Systems”;
- Pooja Sapra and Suresh Kumar and R K Rathy, “Deadlock Detection and Recovery in Distributed Databases”;

Index Terms
Computer Science Distributed Systems

Keywords
Resolution deadlock cycle colored Petri net mapping TWFG.