Abstract

In wireless communication systems antenna diversity is an important technique to combat deep fading to improve the system performance and to increase the channel capacity. The fast and random fluctuation of the received signal strength is usually called fading. Diversity technique has been taken into consideration to mitigate the effects of fading by generating several copies of the signal, which experience independent or estimated independent fading, to decrease the probability of instantaneous deep fades. This paper presents the performance analysis of a system in various diversity mechanism environments by improving bit error rate (BER).

References

- Siavash M. Alamouti," A Simple Transmit Diversity Technique for Wireless
Performance Analysis by Improving Bit Error Rate (BER) through various Diversity Techniques in Wireless Communications

- Zhuo Chen, Member, IEEE, Jinhong Yuan, Member, IEEE, and Branka Vucetic, Fellow, IEEE, Analysis of Transmit Antenna Selection/Maximal-Ratio Combining in Rayleigh Fading Channels, IEEE Transactions on Vehicular Technology, vol. 54, no. 4, July 2005
- Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang, mimoofdma wireless communications with matlab
- Meiling Luo, Guillaume Villemaud, Jialai Weng, Jean Marie Gorcey, Jie Zhang, Realistic Prediction of BER and AMC with MRC Diversity for Indoor Wireless Transmissions, Wireless Communications and Networking Conference (WCNC), 2013 IEEE (2013) DOI : 10. 1109/WCNC. 2013. 6555227
- Dhruv Malik, Deepak Batra, Comparison of various detection algorithms in a MIMO wireless communication receiver, International Journal of Electronics and Computer Science Engineering, ISSN 2277-1956/V1N3-1678-1685.

Index Terms

Computer Science

Wireless
Keywords
BPSK modulation Bit Error Rate(BER) Rayleigh Channel MRC Selective Combining(SC)
Equal Gain Combining (EGC)

Beamforming Technique

Alamouti STBC Technique