Abstract

This paper presents a new method to design nonlinear feedback linearization controller for polymer electrolyte membrane fuel cells (PEMFCs). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEM fuel cells. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEM fuel cell system, thus the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

References

A New Feedback Linearization-NSGA-II based Control Design for PEM Fuel Cell

A New Feedback Linearization-NSGA-II based Control Design for PEM Fuel Cell


Index Terms

Computer Science

Applied Sciences

Keywords

Nonlinear dynamic model
Polymer electrolyte membrane Fuel cells
Feedback linearization
Optimal control
NSGA-II.