Abstract

In Vehicular Ad Hoc Networks (VANET) networks, vehicles are equipped with communication equipment that allows them to exchange messages with each other in Vehicle-to-Vehicle communication (V to V) and with a roadside network infrastructure i.e. Vehicle-to-Roadside Unit Communication (V to RSU). One of the critical issues is consists of the design of delay minimization algorithms that are robust to frequent path distractions caused by vehicles mobility.

The scheme presented in this paper is completely based on for reduces the delay on network for vehicles that has high velocity and arrival time in network to reduces the possibility of collision and also uses the low velocity vehicles to deliver the road status and velocity information of high velocity vehicle deliver in network for remaining vehicles and RSU and also reduces the overall traffic in highly mobile VANET networks. The basic concept behind the proposed scheme is to broadcast only specific and well-defined packets, referred to as delay aware information to all vehicles in this paper. The performance of the scheme is analyses through computer simulations through ns-2 simulator. Simulation results indicate the benefits of the proposed routing strategy in terms of increasing delivery information, reducing the number of packets overhead and increasing the throughput.
Delay minimization and Vehicle velocity based Traffic Control Scheme in VANET

- Saif Al-Sultan n, Moath M. Al-Doori, Ali H. A Bayatti, Hussien Zedan; A comprehensive survey on vehicular Ad hoc network; Journal of Network and Computer Applications. 2013 elsevier. jnca
- Ate Abdrabou, Member, IEEE and Weihua Zhuang, Fellow, IEEE; Probabilistic Delay Control and Road Side Unit Placement for Vehicular Ad Hoc Networks with Disrupted Connectivity; IEEE Journal on selected areas in communication , VOL. 29, NO. 1, January 2011
- Feng Zhang, Jianjun Hao and Shan Le; Traffic Information Aggregation and

Index Terms

Computer Science

Networks

Keywords

VANET RSU AODV Velocity.