Abstract

An analysis of two dimensional unsteady electrically conducting visco-elastic fluid flow through a porous medium has been carried out in this paper in presence of simultaneous heat and mass transfer. The porous medium is bounded by two horizontal plates moving in opposite directions. The visco-elastic fluid is characterized by Walters liquid (Model B'). A magnetic field of uniform strength B0 is applied in the direction perpendicular to the plate. The suction at the plate is assumed to be periodic in nature. The governing equations of fluid motion are solved analytically by using perturbation scheme. The effects of visco-elastic parameter on the governing fluid motion are analyzed graphically for various values of flow parameters involved in the solution.

References

- Walters K., 1962, Non-Newtonian effects in some elastico-viscous liquids whose behaviour at small rates of shear is characterized by a general linear equation of state, Quart.
Visco-Elastic MHD Flow through a Porous Medium Bounded by Horizontal Parallel Plates Moving in Opposite Direction in Presence of Heat and Mass Transfer

- Hassanien, I. A., 1991, Unsteady MHD flow between two infinite parallel porous plates with time varying suction at the plates, Astrophysics space science, 175, 135-147.
- Sarangi, K. C. and Sharma, V. K., 2005, Unsteady MHD flow and heat transfer of a viscous incompressible fluid through a porous medium of variable permeability bounded by two parallel porous plates with heat source/sink, Rajasthan Ganita parishad, 19(2), 179-188.
- Kumar, N., Gupta, S., and Jain, T., 2011, Effects of thermal radiation and mass transfer on MHD unsteady flow through a porous medium bounded by two porous horizontal parallel
plates moving in opposite directions, Heat and Technology, 29(2), 41-50.

Index Terms

Computer Science

Applied Sciences

Keywords

Visco-elastic Walters liquid (ModelB') Hartmann number Prandtl number Reynolds number and Eckert number.