Abstract

With the advent of cloud service-based applications and Software as a Service (SaaS), new applications have recently known an increasing use of service-oriented architecture (SOA). This model has allowed computer science and associated industries to build new customized applications, by using the available and the existing cloud services bridged together dynamically to form a complex workflow process with more functionalities. However, cloud services with similar and compatible functionalities may be offered by multiple providers but may also be offered at different QoS levels. Hence, to build a composite service with a high QoS, a decision should be made based on end-to-end QoS. This work proposes a new approach, for QoS-aware cloud service composition, which addresses a universal model, with end-to-end QoS. It also proposes an effective evolutionary method based on Shuffled Frog Leaping Algorithm (SFLA), which is satisfying global and local constraints. Therefore, in order to evaluate the robustness of the proposed approach, we have evaluated the impact of several parameters that are highly significant in evolutionary methods, such as the impact of the population size, number of candidate services per task and number of criteria. The experimental results show that the chosen algorithm performs better than the ones based on
Genetic Algorithm (GA).

References

Service-Oriented Computing (SOA/SOC), Bern, Switzerland, pages 359{370, 2007
- FERCHICH, S. E, K. LAABIDI, S. ZIDI, "Genetic Algorithm and tabu Search for
- R. Wang, C. -H. Chi, and J. Deng, "A Fast Heuristic Algorithm for the Composite
Web Service Selection", Advances in Data and Web Management, 5446 (Heidelberg:
- A. Klein, F. Ishikawa, and S. Honiden. "Efficient, Heuristic Approach with
Improved Time Complexity for QoS-aware Service Composition", In IEEE, International
- Ravi Khadka, Bramhananda Sapkota, Luis Ferreira Pires, Marten van Sinderen, Slinger
Jansen, Model-driven approach to enterprise interoperability at the technical service level,
- Xue-hui, YANG Ye, Li Xia, "Solving TSP with Shuffled Frog-Leaping
Algorithm", Eighth International Conference on Intelligent Systems Design and
- Antariksha Bhaduri, "A Clonal Selection Based Shuffled Frog Leaping
Algorithm", 4th Annual IEEE Conference. International Advance Computing Conference,
- Haifeng Li, Qing Z, Xiaoxia Y, Linrong X, "Geo-information processing service
composition for concurrent tasks: A QoS-aware game theory approach", Computers &

Index Terms

Computer Science Algorithms

Keywords

Cloud services composition QoS optimization SFLA GA.