Abstract

The attitude control of missiles, spacecraft and satellites is essential; in order to remain them fixed in space to perform their missions accurately. The attitude equation of a satellite is a six-dimensional nonlinear system which includes some types of nonlinear behavior such as periodic trajectory, chaotic dynamics. In this paper, a sliding mode control design method for stabilization of the attitude chaotic satellites with unknown inputs and uncertainties. Using Lyapunov theory, the stability control system is proven. Simulation results show that the proposed controller can be chaotic satellite attitude in the presence of unknown inputs and uncertainties will converge to the unstable equilibrium points.

References

- Jinling Zheng, "A simple universal adaptive feedback controller for chaos and
Attitude Control of Chaotic Satellite with Unknown Input and uncertainties based on Sliding Control

- B. R. Andrejlevski and A. L. Fradkov, ”Control of chaos: Method and Application”, Automation and remote control, vol. 65, no . 4, pp. 505. 523,2004
- Amin Mohammadbagheri, Mahdi Yaghoobi, ”Lorenz-Type Chaotic attitude control of satellite through predictive control”, 2011 Third International Conference on Computational Intelligence, Modelling & Simulation 2011 IEEE, pp. 147-152
- Karim Kemih, Adel Kemiha, Malek Ghanes, ”Chaotic attitude control of satellite using impulsive control”, Chaos, Solitons and Fractals 42 (2009) 735–744
1993

Index Terms
Computer Science
Control Systems

Keywords
Chaotic Attitude Dynamic Error Sliding Control