Abstract

A Connected graph G is a Hamiltonian laceable if there exists in G a Hamiltonian path between every pair of vertices in G at an odd distance. G is a Hamiltonian-t-Laceable (Hamiltonian-t^*-Laceable) if there exists in G a Hamiltonian path between every pair (at least one pair) of vertices at distance t in G. $1 \leq t \leq \text{diam}(G)$. In this paper we explore the Hamiltonian-t^*-laceability number of graph $L(G)$ i.e., Line Graph of G and also explore Hamiltonian-t^*-Laceable of Line Graphs of Sunlet graph, Helm graph and Gear graph for $t=1,2$ and 3.

References

Index Terms

- Computer Science
- Applied Mathematics

Keywords

- Connected graph
- Line graph
- Sun let graph
- Helm graph
- Wheel graph
- Gear graph
- Hamiltonian-t-laceable graph.