Abstract

In Deep Sub-Micron (DSM) technology, leakage power dissipation consumes the substantial percentage of the total power dissipation and rises exponentially according to the International Technology Roadmap for Semiconductor (ITRS). Leakage power decreases battery life for the entire portable battery operated device such as mobile phones, laptop and cam coder etc. VLSI design constraints are always area, power and delay. To reduce the leakage power losses several techniques has been proposed that proficiently reduces leakage power dissipation. Leakage power in CMOS VLSI circuits can be controlled at the circuit level. This paper has considered two run time leakage reduction mechanics i.e. Input Vector Control (IVC) and Gate Replacement (GR). When the first technique is applied on the CMOS circuit, 30% average leakage power reduction is achieved where as 46% of average leakage power is reduces due to GR technique. The Maximum leakage reduction is achieved of 41.2% and 73% due to IVC and GR techniques respectively. These techniques have been applied on ISCAS benchmark circuit C17 using TSMC0.18um technology file on HSPICE simulator.
A Combined Approach of IVC and GR for Leakage Power Reduction in CMOS VLSI Digital Circuit

- T. Kurado, et. al, "A 0.9V, 150 MHz, 10-mW, 4mm2, 2-D Discrete Cosine Transform Core Processor with Variable Threshold (Vt) Scheme", IEEE Journal of Solid State Circuits, vol. 31, no. 11, pp. 1770-1779, Nov. 1996.
- Yu wang, Xiaoming Chen, Wenping wang, Yu cao Yuan Xie and Huazhong Yang, "Leakage power and circuit aging Cooptimization by Gate replacement Techniques", IEE transactions on very large scale system, vol. 19 no. 4, April 2011.
- F. Gao and J. P. Hayes, "Exact and heuristic approaches to input vector control for leakage power reduction", in Proc. ICCAD, 2004, pp. 527–532.
Index Terms

Computer Science Circuits And Systems

Keywords
Leakage current Deep Sub Micron technology IVC Gate Replacement