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ABSTRACT 

Segmentation of brain tissues is one important process prior to 

many analysis and visualization tasks for magnetic resonance 

(MR) images. Clustering is one of the unsupervised techniques 

for doing the segmentation. Clustering is done with probabilistic, 

possibilistic and plausibilistic approaches. Most of segmentation 

techniques have relied on multi channel characteristics of MR 

images while a few studies have reported segmentation from 

single channel MR images. Owing to operator performance, 

limitation of equipment and environmental conditions MR 

images contain noise. This noise can lead to serious inaccuracies 

in the segmentation result. We conduct the research in measuring 

the performance of crisp and fuzzy clustering algorithms with 

probabilistic, possibilistic and plausibilistic approach in different 

noise level for single channel MR image. To validate the 

accuracy and robustness of the result of clustering algorithms we 

carried out experiments on simulated MR brain scans. The 

performance of algorithms is analyzed form three measures 

namely: number of iterations required, misclassification error and 

per class (tissue) misclassification error in different noise level 

present in the single-channel MR image. 

General Terms 

Pattern Recognition, Bio-Medical Image Analysis, Artificial 

Intelligence.  

Keywords 

Single-channel MR image, segmentation, unsupervised 

clustering algorithm, brain tissue classification. 

1. INTRODUCTION 
Magnetic resonance imaging (MRI) or nuclear magnetic 

resonance imaging (NMRI) [1, 2] is primarily medical imaging 

technique used in radiology to visualize internal structure of the 

body. MRI provides much greater contrast between different soft 

tissues of body. This ability makes it useful for neurological, 

musculoskeletal, cardio-vascular and oncological imaging [3]. 

Brain matter can be generally categorized as White Matter 

(WM), Gray Matter (GM) and Cerebrospinal Fluid (CSF) [4, 5]. 

Most of brain structures are anatomically defined by the 

boundaries of these tissue classes [4-6]. So we need a method of 

segmenting tissues in classes. It is an important step for 

quantitative analysis of the brain and its anatomical structures. 

Brain tissue classification is also important step for detection of 

various pathological conditions affecting brain parenchyma [7- 

9]. It is also used for surgical planning and simulation [10] and 

three dimensional visualization for diagnosis and detection of 

abnormalities [11, 12]. It is also useful in the study of brain 

development [13, 14] and human aging [15, 16]. 

In MR imaging, images are produced based on intensities 

achieved by three tissue characteristics namely: T1 relaxation 

time, T2 relaxation time and proton density (PD). The images 

obtained by these properties are known as T1- weighted MR 

images, T2-weighted MR images and proton density MR images 

respectively. The effect of these parameters on image can be 

varied based on the adjusting the parameters like time to echo 

(TE) and time to repeat of the pulse sequence [17]. By using 

different parameters or number of echoes in the pulse sequence, 

a multitude of nearly registered images with different 

characteristics of same object can be achieved. If only a single 

MR image of the object is available such an image is referred to 

as single-channel (single-echo) image, and in case when numbers 

of MR images of the same object at same section are obtained, 

they are referred as multichannel (multi-spectral or multi-echo) 

images [18]. For a given scanning time, the voxel sizes achieved 

in multi-spectral images are larger than those achieved with 

single-channel images. This ability of finer voxel sizes makes 

single-channel images more suitable for precise and accurate 

quantitative measurements of anatomical structures and tissues. 

But multi-channel image provide more information at given 

voxel size than single-channel [17, 18]. 

Most of segmentation techniques have relied on multi-spectral 

characteristics of MR images while a few studies have reported 

segmentation form single-channel MR images [19]. 

Clustering is the unsupervised process of classification of 

objects, based on similarities among them. It is unsupervised 

technique as we do not have any prior information about the class 

of the data point or object. The backbone of clustering is to 

expose the hidden structure for the purpose of classification or 

data modeling. Clustering is done by making the partition among 

the data points. The aim of clustering on data is to make partition 

among the data points which have dissimilar characteristics and 

data points in the same group have similar characteristics. The 

partition to make the cluster can be crisp (hard) or fuzzy (soft). 

The approach to make the partition can be probabilistic, 

possibilistic or plausibilistic. These there approaches with their 
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hard and soft variants are described in Section 2. It deals with 

algorithms based on probabilistic, possibilistic and plausibilistic 

approaches for unsupervised clustering techniques. The 

validation of the clustering results used in this work and the 

discussion of the results of these algorithms are described in the 

Section 3. Finally, the conclusion of our research is described in 

the Section 4.  

2. MATERIAL AND METHOD 
Given the data set of n points { | 1,2,..., },X x k nk  where xk  

may be one dimensional or multi dimensional data point. In 
single-channel MR image each kx  will be intensity either of T1 

weighted or T2 weighted or PD weighted image and in case of 
multi channel MR image it will be combination of more than one 
from above three images. Each kx  can also be features derived 

from these images. 

In 1922 R. A. Fisher [20] introduced the method of Maximum 
Likelihood after the presentation of numerical procedure he 
presented in 1912 [21]. Maximum Likelihood is a popular 
statistical method for fitting statistical model to data and 
provides the estimate for parameters of the model [22]. Given a 

family of probability density function f , parameterized by an 

unknown parameter  and n observations (data points) the 

Likelihood function can be defined by 

1 2( ) ( , ,..., ).nL f x x x  The value of  that maximizes 

( )L  is the Maximum Likelihood estimate (MLE) of and is 

given by [22, 23] ˆ arg max ( ).L  In case when f  is 

assumed to be the weighted mixture of component probability 
density functions, the Maximum Likelihood estimate is given by 
[24]. The clustering algorithm based on Maximum Likelihood 
estimate is known as Maximum Likelihood clustering [24, 25]. 

Bezdek and Dunn [26] proposed distance norm based on Fuzzy 
Maximum Likelihood estimate (FMLE). Gath and Geva [27] 
presented a clustering algorithm based on Fuzzy Maximum 
Likelihood estimate for hyper ellipsoidal clusters and clusters 
with variable shape and size. The Fuzzy Maximum Likelihood 
estimate clustering employs the distance norm based on FMLE 
proposed by Bezdek and Dunn [26]. This distance norm is given 
by 
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where Fmi is the fuzzy covariance matrix of the ith cluster, vi is 

called cluster center or cluster prototype, ( )
ik

U  is the 

fuzzy partitioning matrix, m is the weighting exponent controls 
the 'fuzziness' of the resulting cluster and αi is aprior probability 
of selecting the ith cluster. The distance in Eq. (1) is used in the 
calculation of P (i=xk), the probability of selecting the i th cluster 
given the kth data point, is given by 
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By using Eq. (1) and (3) the clustering is performed based on the 
distance norm of Fuzzy Maximum Likelihood estimate. 

In 1978 for dealing with uncertainty and an alternative to 
probability theory Lotfi Zadeh [28] introduced a mathematical 
theory called Possibility Theory [29] as an extension of Fuzzy 
sets [30]. Krishnapuram and Keller [31] cast the clustering 
problem into the framework of possibility theory by making the 
data partition as possibilistic partition. This is done by 
minimizing the objective function given by [31]  

2
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where and Dik is squared inner product distance norm, T = (tik) is 

typicality or possibility matrix and Wi is cluster weight. The 

membership values are interpreted as the degree of possibility of 

the points belonging to the classes. In possibilistic partition of 

data, the degree of possibility of the point belonging to the class 

is the compatibility of that point with that class prototype or 

center. Owing to the need of typicality (possibility) and 

membership, N. Pal and J. Bezdek [32] extend the basic idea of 

PCM to fuzzy possibilistic c-means (FPCM). It also solves 

coincident clusters problem of PCM. Fuzzy possibilistic c-means 

partition of data can be achieved by minimizing the objective 

function given by [32] 
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Like probability and possibility theory, to deal with partial and 

unreliable information, Dampster [33] and Shafer [34] introduced 

the Theory of Belief functions, also referred as Evidence Theory. 

It is a theoretical framework for reasoning with partial and 

unreliable information using different models of reasoning under 

uncertainty including Smets's Transferable Belief Model [35]. 

Denœux and Masson used the Evidence Theory for the purpose of 

clustering. They proposed the clustering algorithm called 

Evidential Clustering (EVCLUS) [36]. The basic idea for 

EVCLUS is the more similar two objects; the more plausible it is 

that they belong to the same cluster. Here the clustering of data 

points is done based on the concept of basic belief assignment 

(bba), whereby a mass of belief is assign to each possible subset 

of classes. After assigning bba to each data point the plausibility 

for each two objects be-longing to same class is used to do the 

clustering. Let M = (m1,m2,…,mc) be credal partition, set Ω = 

(ω1, ω2,…, ωc ) of c classes making the partition of data and F = 

A1, A1,…,Af be the set of focal elements. EVCLUS minimizes an 

error function inspired from Sammon's [37] stress function given 

by 
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where a and b are coefficients and C is normalization constant. 
Dxx’ is the dissimilarity between data point x and x’, Kxx’ is the 
degree of conflict between x and x’. Denœux and Masson 
introduced a new clustering method Evidential c-means (ECM) 
[38] algorithm, which is an evidential version of the fuzzy c-
means algorithm. Here the partition of data points is achieved by 
minimizing the objective function given by 
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where parameter δ controls the number of data points considered 
as outliers, β controls the fuzziness of the resulting cluster. cα

i are 
additional weighting coefficients for penalizing the subset in Ω 
of high cardinality, α controls the degree of penalization. 

 

3. RESULT VALIDATION & DISCUSSION 
Even though different scalar validity measures like Partition 

Coefficient (PC), Classification Entropy (CE), Partition Index 

(SC), Separation Index(S), Xie and Beni's Index (XB), Dunn's 

Index and many more [39] for the validation of the result of the 

clustering algorithms are available we use the following: As the 

interest in computer-aided, quantitative analysis of medical 

image data is growing, the need for validation of such techniques 

is also increased. For the solution of validation problem, 

Simulated Brain Database (SDB) is available [40]. The 

Simulated Brain Database contains a set of realistic MRI data 

volumes [41] produced by an MRI simulator [42]. This data set is 

used in our work to evaluate the performance of the tissue 

classification algorithms in a setting where the truth is known 

[43]. The detail about the noise used in our work for analysis is 

described in [40- 43]. 

Table 1. Number of iterations required for clustering in 
different noise level 

 

Algorithm 

Noise Level in % 

0 1 3 5 7 9 

ML 27 28 30 35 36 40 

FML 29 32 36 40 46 52 

PCM 11 11 18 32 45 52 

FPCM 16 24 33 38 48 70 

EVCLUS 269 285 290 322 357 378 

ECM 241 269 287 312 337 359 

    

The results of these algorithms in different noise level for single-

channel MR image data set are described in this section. As 

these algorithms are iterative algorithms, the number of 

iterations required for the algorithm in different noise level is 

shown in Table 1. In Maximum Likelihood (ML) clustering 

algorithm as the noise level in the MR image is increase from 

0% to 9%, the number of iterations required to do the clustering 

are also increase from 27 to 40, causing increase in the 

processing time to make clusters. In case of Fuzzy Maximum 

Likelihood (FML) clustering algorithm, the number of iterations 

required are also increase to 29 to 52, as the noise in the MR 

image increase from 0% to 9%. Also the numbers of iterations 

required are higher than that requires for the ML clustering 

algorithm. In Possibilistic C-Means (PCM) clustering the number 

of iterations required are also increases as the noise level in the 

MR image increase. However the iterations are still fewer than 

that of ML and FML clustering algorithms. The number of 

iterations required in case of Fuzzy Possibilistic C-Means 

(FPCM) clustering algorithm are increase as the noise level in 

the MR image increase. They are higher than that required for 

PCM clustering algorithm. However in lower and moderate noise 

level they are fewer, and in higher noise level they are higher 

than ML and FML clustering algorithms. In case of Evidential 

clustering (EVCLUS), the numbers of iterations required are also 

increase as the noise level in the MR image increase. Also the 

required iterations are higher than that of all the previous 

algorithms. In Evidential C-Means (ECM) required iterations are 

increase as the noise level in MR image in-crease. Compare to 

EVCLUS fewer number of iterations are required by ECM 

clustering algorithm, however they are still higher than ML, 

FML, PCM, and FPCM clustering algorithms. 

Table 2. Misclassification Error in different noise level in 

(%) 

Algorithm 

Noise Level  in %  

0 1 3 5 7 9 

ML 24.3320 10.1706 4.7270 5.4471 7.9650 12.8879 

FML 21.4957 10.7092 4.4149 5.2194 8.4258 39.7725 

PCM 3.4647 3.1408 3.7680 6.2781 11.5763 17.9696 

FPCM 1.3077 1.5024 3.0136 5.0766 9.0209 13.7213 

EVCLUS 1.2715 1.4945 3.0109 5.0587 9.0189 16.1827 

ECM 1.2155 1.4400 2.9565 5.0031 8.9776 16.0828 

 

The misclassification error in % for different noise level in above 

discussed algorithms has shown in Table 2. In ML clustering 

algorithm the misclassification error is higher in lower and 

higher noise level, while in moderate noise level it is nearer to 

the noise present in the MR image. In lower noise level the 

misclassification error is less in FML than the ML clustering 

algorithm. However in higher noise level the misclassification 

error has increased than that of ML clustering algorithm. Such 

behavior in the misclassification error is due to the underline 

assumption of probability distribution in ML and FML clustering 

algorithms. In PCM clustering algorithm the misclassification 

error increases as the noise in MR image increase. This error is 

less than the error in FML in lower noise level, whereas in 
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higher noise level this error is higher than FML clustering 

algorithm. In FPCM clustering algorithm the misclassification 

error increases as the noise present in the MR image increase. 

This error is less than error present in PCM clustering algorithm. 

Also in lower noise level this error is less than ML and FML 

clustering algorithms. In EVCLUS algorithm the 

misclassification error increases as the noise in the MR image 

increase. Also except the higher noise level this error is less than 

error present in the FPCM clustering algorithm. In case of ECM 

clustering algorithm the misclassification error increases as the 

noise present in the MR image increase. This error is less than 

error in EVCLUS. Also except the higher noise level this error is 

less than all the previous discussed algorithms. 

Table 3. Per Class (Tissue) misclassification error in 

different noise level in (%)  
                                                                              

Noise  

 

Class  

Algorithm 

ML  FML  PCM  FPCM  EVCLUS  ECM  

 

0%  

CSF  13.1026  19.2960  0  1.4975  3.4358  3.3315  

GM  0  0  6.0496  2.3122  1.3126  1.2946  

WM  76.6317  59.1685  2.6821  0.6304  0.7982  0.7812  

 

1%  

CSF  6.5036  8.9079  12.9032  1.4781  .31587  3.1169  

GM  0.2024  0.0777  0.0155  2.5331  1.6569  1.6104  

WM  21.5853  22.6302  3.8483  0.8567  1.1291  1.0515  

 

3%  

CSF  2.1777  2.1191  14.4416  2.4152  5.1728  5.0678  

GM  2.7196  2.8842  0.9115  5.4351  4.2769  3.9838  

WM  7.1079  6.3340  4.2160  1.7063  2.1528  2.0479  

 

5%  

CSF  5.2058  5.1422  13.2986  4.4957  6.8923  6.7568  

GM  6.2811  7.2229  2.6737  8.6765  6.7893  6.5636  

WM  5.5120  4.4356  8.4274  3.3469  4.1883  4.1353  

 

7%  

CSF  7.4847  6.1175  4.6125  4.6125  8.35821  8.4830  

GM  13.0980  19.3332  14.6975  14.6975  9.9289  9.8406  

WM  6.0347  3.7682  7.8438  7.8438  10.5213  10.1392  

 

9%  

CSF  13.5466  48.9286  4.1181  0  10.6928  10.5368  

GM  21.9981  All  29.6461  All  15.7879  15.6177  

WM  10.5659  0  20.3271  0.0383  24.5019  23.4500  

 

The most interesting part of the result is the misclassification 

error per class (tissue). As we are classifying the MR image in to 

Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid 

(CSF), we compute the misclassification error per class (tissue) 

for single-channel MR image after the clustering done by the 

discussed clustering algorithms. The per class misclassification 

error is shown in Table 3. As for the clustering algorithms in 

noise level of 0% to 9%, Table 3 shows the misclassification 

error in GM, WM and CSF. As increase the noise level the per 

class misclassification error in all the discussed clustering 

algorithms increase. Aldo GM tissue has higher misclassification 

than that of WM and CSF tissues. In probabilistic clustering 

algorithms ML and FML, in lower noise level less 

misclassification in GM tissue is achieved but in the same it has 

shown increase in the misclassification in WM and CSF tissues, 

and in higher noise level although they have shown less 

misclassification in CSF and WM tissues the error in GM has 

also increased. FML has shown less per tissue misclassification 

error than ML clustering algorithm.  

In possibilistic clustering algorithms PCM and FPCM, increase 

in noise level cause increase the misclassification error in GM 

tissue, also FPCM has shown less per class misclassification 

error than PCM clustering algorithm. In evidential clustering 

algorithms EVCLUS and ECM, the increase in the noise level 

causes increase in misclassification error in GM, WM and CSF 

tissues. ECM has shown less per tissue misclassification error 

than EVCLUS algorithm. In given noise level for all tissues 

ECM has shown less per class misclassification error than 

discussed algorithms. 

The images of segmentation result are shown in Figure 1, where 

blue color denotes Gray Matter (GM), green color denotes White 

Matter (WM) and red color denotes CerebroSpinal Fluid (CSF). 

Figure 1. Segmentation result in different noise level with 

discussed unsupervised clustering algorithms 

 

 

4. CONCLUSION 
This paper presented a comparison of hard and fuzzy clustering 

algorithms with probabilistic, possibilistic and plausibilistic 

approach for tissue segmentation of single-channel MR image in 

different noise level. The performance of these algorithms has 

measured in different noise level using two measures namely: 

number of iterations required and the misclassification error. We 
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successfully classify the brain tissues in single-channel MR 

image in different noise level using probabilistic, possibilistic 

and plausibilistic clustering algorithms. The effect of noise 

present in the single-channel MR image is measured on the 

number of iterations required to do the clustering, the 

misclassification error and the per class (tissue) misclassification 

error. For discussed algorithms as the noise level in the image 

increases the number of iterations required to do the clustering is 

also increases than that required with no noise condition. Also 

the misclassification error increases as the noise level in the MR 

image increases. The segmentation result improves as we move 

from probabilistic approach to possibilistic approach to 

plausibilistic approach with cost of number of iterations hence 

processing time required to do the clustering. In all these three 

approaches the soft clustering algorithms gave better 

segmentation result than that of the hard or crisp clustering 

algorithms for the same approach.  
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