
Design and Evaluation of Digital Content for Education (DEDCE) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

44

Activity Instantiation Model for e-Learning Engines

Jorge Torres
Distributed and Adaptive
Systems Lab for Learning

Technologies.
Tecnológico de Monterrey,

México

Eduardo Juárez
Distributed and Adaptive
Systems Lab for Learning

Technologies.
Tecnológico de Monterrey,

México

Jesús Reséndiz
Distributed and Adaptive
Systems Lab for Learning

Technologies.
Tecnológico de Monterrey,

México

ABSTRACT

In Learning Process Engines, a main concern is to deliver rich

pedagogical learning scenarios. However current e-learning

systems are not completely capable of handling complex role

structures and learning activity flows. To solve this issue, an

activity instantiation model based on role access control is

proposed. This model is capable of ensuring the completeness of

the learning flow for each learner, and it allows the learner and

the professor to know and maintain control of her learning

process and also to participate with other learners in team-based

tasks.

General Terms
Activity Instantiation Model, Learning Process Engines.

Keywords
Learning Process Engines; Learning Systems Platforms and

Architectures; LPCEL; Activity Instantiation Model.

1. INTRODUCTION
E-Learning systems evolution [1] has brought an enhanced set

of characteristics and flexibility to the learning process, moving

from simple static web contents, to the creation of Educational

Modeling Languages (EML) able to fully describe learning

scenarios, such as IMS LD [2] which are later executed by a

process engine like CopperCore for IMS LD.

Originally, EMLs were designed to describe E-Learning

Systems that had all the resources, the learning scenario will

need, in a self-contained mode. However, it was found that such

systems were unable to provide a rich and diverse pedagogical

experience for the learner, due to the lack of expressiveness of

EMLs and their engines, in terms of pedagogical diversity and

learning flow description [3].

To aboard these issues, the Learning Process Composition and

Execution Engine (LPCEL) was proposed from the learning

scenario design perspective [4]. From the architectural

perspective, the Web Applications and Services Enhanced

Learning Architecture (WASEL) [1] was proposed in order to

integrate learning web services. To complete the vision of this

new generation of e-learning systems, efforts are focused on the

design and construction of Learning Process Engines (LPE).

A main concern in such types of engines is to deliver rich

pedagogical learning scenarios able to handle complex role

structures and complex learning activity flows. Sometimes in

collaborative work, learners or even professors (if there are more

than one), may perform diverse roles, which provide access to

different activities, e.g. only the team leader can do the final

delivery of a project, the project manager is in charge of the

work plan, the student with the role quality assurance will

design the user acceptance tests for the project, the professor

with more modeling experience will evaluate modeling projects,

among others situations.

The objective of this paper is to provide a model capable of

solving these issues. The rest of this paper is structured as

follows: section 2 presents our vision of e-learning systems,

section 3 describes briefly the role-based access control model

and current instantiation models, section 4 formally presents our

Activity Instantiation Model for Learning Process Engines,

section 5 shows a worked example of the model, to end with

some conclusions.

2. A NEW GENERATION OF E-

LEARNING SYSTEMS
Our vision for new e-learning systems is based on Learning Web

Services (LWS), which need to be integrated and executed by

the learners in a pedagogical sense, i.e. participants may perform

learning activities by consuming many different web services,

and is achieved by the means of a service-oriented-architecture

(SOA) paradigm [5].

Inside a distributed learning environment, there is a great variety

of resources and services that learners can use to achieve their

learning objectives. Some of these services may be recovered

and deployed locally; others may be executed in a distributed

way, allowing the integration of new resources and services to

the learning process. Today, the only EML offering a framework

for the integration of web services within a distributed

environment is LPCEL, and it is also the most expressive EML

to represent complex learning flow structures, not even IMS LD

[6].

LPCEL along with the WASEL architecture (see Figure 1)

present a SOA based approach able to support complex learning

scenarios within a distributed environment. In this proposed

architecture, the learning scenario is designed with a Learning

Process Editor and executed by a Learning Process Engine,

which communicates with a Learning Services Bus where the

Learning Web Services are plugged in. User interface must be

Web 2.0-enabled and communication is made through an API

WS-Access. Interoperability with other Learning Management

Systems such as Moodle or LAMS can be achieved by Wrap ad-

hocs.

In such architecture, for learning process engines as in

Workflow Management Systems for workflow engines [7], the

control of process and activity instances, and role management

Design and Evaluation of Digital Content for Education (DEDCE) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

45

of participants, are main concerns. In a pedagogically rich

environment, LPEs must be able to handle complex role

structures and complex learning activity flows, because learners

and professors may perform diverse roles in the same learning

scenario. Each role provides a different access level to activities

based on specific learning objectives. Current e-learning systems

lack these kinds of controls. This situation causes confusion to

the learners about which activities they need to perform in an

individual manner or which activities are going to be performed

only by one learner in the team, or by everybody in a

collaborative way. In most cases, instances for every activity are

created for each learner even if the learner does not perform the

activity. In other cases, the e-learning system acts only as a file

repository and it does not provide any pedagogical help for the

learners to perform learning activities [8].

In most current e-learning systems the learner progress is only

tracked by the results of assessment activities, which does not

necessarily represent the state of the learning process of a

learner.

In order to propose a solution for Learning Process Engines

about these issues, as a starting point, we reviewed the Role-

Based Access Control Model and instantiation models in current

EML engines.

Fig 1: WASEL Architecture [1].

3. CURRENT ACCESS CONTROL AND

INSTANTIATION MODELS

3.1 Role-based Access Control
Distributed learning scenarios are multiuser environments with a

strong need for access control. The Role-Based Access Control

Model (RBAC) [9] provides a framework for authorization

management including functions to grant access to resources;

also has a strong acceptance in enterprise environments for its

capability to support security management and policies. It has

been found that is better to specify access control in terms of

roles rather than in terms of individuals.

The RBAC model is organized in four levels of capabilities:

Core RBAC, Hierarchical RBAC, Static Constrained RBAC and

Dynamic Constrained RBAC. For our activity instantiation

model, Hierarchical RBAC is our main interest for its capability

to represent a hierarchical structure of roles, which is necessary

in learning scenarios for collaborative work. The H-RBAC

model is depicted in Fig. 2. As it can be seen, the model is

composed by the elements Users, Roles, Subjects, Operations,

Objects, and Permissions. The Role Hierarchy is established by

inheritance relationships between Roles, where a junior role

inherits the permissions of its senior role.

Fig 2: Hierarchical RBAC [9].

3.2 Instantiation Models
In order to execute and reuse a process many times in an

execution engine, and to reuse its activities in different points of

the process, it is necessary to properly instantiate the process

and its activities. To achieve these goals, a model of states is

needed to characterize the behavior of the process and its

activities and to guarantee a reliable execution of the process.

In Workflow Systems Theory [7], an execution engine is seen as

a state transition machine, where processes or activity instances

Design and Evaluation of Digital Content for Education (DEDCE) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

46

modify their state as a response to external events, or specific

control decisions taken by the engine. There are six basic states

for a process instance (see figure 3): (1) initiated: a process

instance has been created but it has not fulfilled the conditions to

start execution; (2) running: the process instance has started

execution; (3) active: one or more of process instances activities

have been started; (4) suspended: the process instance is

quiescent and no activities are started until it returns to the

running state; (5) completed: the process instance has fulfilled

the conditions for completion; and (6) terminated: execution of

the process instance has been stopped before its normal

completion.

Fig 3: State transitions for process instances.

Not only processes need to be instantiated, but also their

activities. In Fig. 4, the four basic state transitions of activity

instances are: (1) inactive: the activity instance has been created

but has not yet been activated; (2) active: a workitem has been

created and assigned to the activity instance for processing; (3)

suspended: the activity instance is quiescent and will not be

allocated a workitem until returned to the running state; and (4)

completed: execution of the activity instance has completed.

Fig 4: State transitions for activity instances.

4. ACTIVITY INSTANTIATION MODEL
In order to design an activity instantiation model for learning

process engines, it is necessary to emphasize in the difference

between workflows and learning flows. In workflows it is

common for a user to complete a task, but for her it’s not

relevant the current state of the workflow, because her

responsibility is limited to the sub-process where she is the

owner; meanwhile the chief owner of the whole process is who

cares about everything, but it is uncommon that the chief will be

performing a certain task in the workflow. Also, users are

limited to perform only a certain type of activity in just one part

of the process. In the other hand, in a learning flow, the learner

is the owner and is responsible of her entire learning process.

Based on the above, the activity instantiation model considers

the benefits of workflow systems about monitoring the process

state, level of execution of activities based on roles (RBAC), and

also the learning process implications to provide pedagogical

sense to the execution of activities in a learning scenario.

First, we will define the sets of entities related to the activities

that are going to be instantiated, which are the users, the roles,

and the teams.

{ }nusususUS ,,, 21 K=

Where US is the set named Users, and represents subjects with

access to the learning process engine. Elements of US are

defined by the tuple:

()puntupleus ,,=

Where n is the real name of the subject, u is the username, i.e.

the user id in the engine, and p is the password of the subject.

{ }nrrrR ,,, 21 K=

Where R is the set named Roles, and represents the

responsibilities of a user in a course. The elements of R are

defined in design time by the tuple:

()dttupler ,=

Where t is the title of the role, and d is the description.

{ }ntttT ,,, 21 K=

Where T is the set named Teams, and represents the teams

participating in a course. The elements of T are defined in

execution time by the tuple:

()etntuplet ,=

Where tn is the name of the team, and e is the execution instance

of a course.

RRRH ×⊆

Where RH is the set named Role Hierarchy, and is used to

establish different levels of responsibilities in a course. These

relationships are defined in design time.

USRUR ×⊆

Where UR is the set named User roles, and is a subset of many

to many mapping between Users and Roles, established in

execution time.

TRTR ×⊆

Where TR is the set named Team roles, and is a subset of many

to many mapping between Roles and Teams, established in

execution time.

With the previous sets defined, now we will proceed to the

presentation of the sets related to activity descriptions, including

individual and group activities.

{ }naaaA ,,,
21 K=

Inactive

Suspended

Active Completed

Suspend /

Resume

Start

(Has Work Item)

Initiated

Suspended

Running

Complete

Active

Terminate

Start

Restart

Restart
Suspend /

Resume

Terminate /

Abort

(1 or more activity

instances)

Iterate

through all

active

activities

Initiate

Design and Evaluation of Digital Content for Education (DEDCE) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

47

Where A is the set named Activities, which represents

descriptions of learning activities. An activity is defined in

design time by the tuple:

() () { }1,0:|,,, =∀= ∈ iipridttuplea Aa

Where t refers to the title of the activity, d is the description of

the activity, i indicates if the activity is an individual or a team

activity, and r is the role that can execute the activity.

() 1:| =∀⊂ ∈ iipAIA Aa

Where IA is the set of Individual activities, which is a subset of

Activities, where i means that the activity has to be performed

individually.

() 0:| =∀⊆ ∈ iipATA Aa

Where TA is the set of Team activities, and is a subset of

Activities, where i means that the activity may be performed

only once by a team of learners.

Therefore:

ATAIA ⇔∪

Finally, the sets of activity instances are generated as follows.

() () rtrptpIAURII IAiaURur =∀∧∀×⊆ ∈∈ :|

Where II is the set named Individual activity instances; is the set

of activities performed individually by each user with a specific

role (the same of the activity description). If the activity

produces an assessment value, the value is only for the user who

performed the activity, and if the activity requires the generation

of a product (e.g. project, paper), the user does it herself.

() () rtrptpTATRTI TAtaTRtr =∀∧∀×⊆ ∈∈ :|

Where TI is the set named Team activity instances; is the set of

activities performed in teams by users with a specific role (the

same of the activity description). If the activity produces an

assessment value, the value is for all the team members, and if

the activity requires the generation of a product, it can be done

by all the users in the team.

TIIII ∪=

Where I is the set named Instances, which is the set of all

activity instances.

() { }fcsainsspI Ii ,,,,: =∀ ∈

Where each instance of i, has the property state s, which is the

execution state of the instance. The execution states of the

instance may be: (1) in-inactive; (2) a-active; (3) s- suspended;

(4) c-completed with success; or (5) f -failure, which means that

the instance has been completed but with failure, due to a

technological matter or because the learner did not achieved the

learning objectives, such as failing a test.

So far, the activity instantiation model has been defined.

Following, a worked example of the activity instantiation model

is presented.

5. A WORKED EXAMPLE
In the Tecnológico de Monterrey, México, inside the Master

program of IT Administration, there is a course of IT Services

Continuous Improvement1. The course designed by M.S. Teresa

de Jesús Lucio, focuses the fifth module to the topic of Problem

Management. A part of the module has the following activities:

1. Make critical reading (individual mode, role: learner).

2. Case study reading (individual mode, role: learner).

3. Technical analysis of the case (collaborative mode,

role: engineer).

4. Administrative analysis of the case (collaborative

mode, role: administrator).

5. Case study conclusions (collaborative mode, role:

team member).

6. Delivery of the case study (collaborative mode, role:

team leader).

From the above we define the following roles:

() () () (),,,, 4321 nadmirengineerrmemberteamrlearnerr

()leaderteamr5

Which constitute the set of roles:

{ }54321 ,,,, rrrrrR =

With the following hierarchy:

() () () (){ }52423221 ,,,,,,, rrrrrrrrR =

The activities are defined as follows:

() 







learnerChOperationServiceITILBook

readingcriticalMake
a

,1,4.

,
1

K

() 








learnerNostudyCase

readingstudyCase
a

,1,3.

,
2

K

() 








engineerstudycasetheAnalyse

studycasetheofanalysysTechnical
a

,0,

,
3

K

() 








nistratoradmistudycasetheAnalyse

studycasetheofanalysysnistrativeAdmi
a

,0,

,
4

K

() 








memberteamsconclusionMake

sconclusionstudyCase
a

,0,

,
5

K

() 







leaderteamdeliveryMake

studycasetheofDelivery
a

,0,

,
6

K

The above elements constitute the following sets:

{ }654321 ,,,,, aaaaaaA =

{ }21 , aaIA =

1 http://www.ruv.itesm.mx/portal/promocion
oe/m/mti/plan/homedoc.htm#TI5018

Design and Evaluation of Digital Content for Education (DEDCE) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

48

{ }6543 ,,, aaaaTA =

Where

ATAIA ⇔∪

At runtime, the following learners are registered to the course:

() () (),**,*3,,**,*2,,**,*1, 321 CarolusBobusAliceus

() () ()**,*6,,**,*5,,**,*4, 654 FranusEveusDavidus

Who constitute the set of learners:

{ }654321 ,,,,, ususususususUS =

According to the number of learners enrolled, the teacher

decided to create two teams:

() ()2010,2,2010,1 21 dicagoteamtdicagoteamt −−

Which constitute the set of teams:

{ }21 , ttT =

The teacher decides to assign the following roles to the learners:

() () () () () (){ }655443352413 ,,,,,,,,,,, usrusrusrusrusrusrUR =

And by hierarchy inheritance, the final role assignation stands as

follows:

() () () () () ()
() () () () () ()
() () () () () () 
















=

615141312111

625242322212

655443352413

,,,,,,,,,,,

,,,,,,,,,,,,

,,,,,,,,,,,,

usrusrusrusrusrusr

usrusrusrusrusrusr

usrusrusrusrusrusr

UR

Then the teacher assigns the following roles to the teams

() () () ()
() () () () 








=
25152414

23132212

,,,,,,,

,,,,,,,,

erererer

erererer
TR

When the execution of the course starts, the system generates

the following instances of activities:

()() ()() ()() ()()
()() ()() ()() ()()
()() ()() ()() ()() 














=

,,,,,,,,,,,,

,,,,,,,,,,,,

,,,,,,,,,,,,

261251241231

221211161151

141131121111

ausrausrausrausr

ausrausrausrausr

ausrausrausrausr

II

12=II

()() ()() ()() ()()
()() ()() ()() ()() 








=
625615522512

424414323313

,,,,,,,,,,,

,,,,,,,,,,,,

aeraeraeraer

aeraeraeraer
TI

8=TI

20=I

In total, 20 activity instances will be generated, of which 12 are

individual instances and 8 are team instances.

6. CONCLUSIONS
The main contributions of our activity instantiation model are:

(1) the model is capable of generating the instances needed for

each activity, which ensures the completeness of the learning

flow for each learner; (2) the model only generates the activity

instances needed, i.e. there are no instances generated for

activities that are not in the interest for certain learners, e.g. a

user with an specific role does not have an activity instance for

an activity that she will not perform; (3) there are two types of

activities, individual activities and team activities, this

distinction allows the learner to know and maintain the control

of her learning process and also to participate with other learners

in team-based tasks; (4) the way the instantiation is generated in

the model, allows the professor to know the state of the learning

flow of each learner and the whole class.

7. ACKNOWLEDGMENTS
The work is partly funded by the Avanza subprogramme

(project TSI-020501-2008-53), the PCI subprogramme (project

A/018126/08) of the Spanish Government and the Distributed

and Adaptive Systems Lab for Learning Technologies

Development, DASL4LTD (C-QRO-17/07) from the

Tecnólogico de Monterrey, México.

8. REFERENCES
[1] Torres, J., Cárdenas, C., Dodero, J.M., Juárez, E. 2010.

Educational Modeling Languages and Service-Oriented

Learning Process Engines. In-teh.

[2] Koper, R., Tattersall, C. 2005. Learning Design, a

handbook on modeling and delivering networked education

and training.

[3] Dodero, J.M., Torres, J., Aedo, I., Díaz, P. 2005. Beyond

descriptive EML: Taking control of the execution of

complex learning processes. In Proceedings of the

Multidisciplinary Symposium on the Design and

Evaluation of Digital Content for Education.

[4] Torres, J., Dodero, J., Aedo, I., Diaz, P. 2006. Designing

the execution of learning activities in complex learning

processes using LPCEL. In Proceedings of the 6th

International Conference on Advanced Learning

Technologies.

[5] Erl, T. 2004. Service-Oriented Architecture: A Field Guide

to Integrating XML and Web Services. Prentice Hall.

[6] Torres, J., Juarez, E., Dodero, J.M., Aedo, I. 2009. EML

learning flow expressiveness evaluation. In Proceedings of

the Ninth IEEE International Conference on Advanced

Learning Technologies.

[7] Hollingsworth, D. 1995. The Workflow Reference Model -

Issue 1.1. Technical Report. Workflow Management

Coalition.

[8] Holgado, C. 2010. Luces y sombras de la plataforma

Moodle: Valoración y experiencia didáctica en lenguas

extranjeras. In Proceedings of the Multidisciplinary

Symposium on the Design and Evaluation of Digital

Content for Education.

[9] Ferraiolo, D., Kuhn, D.R., Chandramouli, R. 2007. Role-

based Access Control. Artech House Inc.

