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ABSTRACT 

Nesting (Cutting and Packing) problems are optimization 

problem encountered in many areas of business that look for 

good arrangement of multiple items in larger containing regions. 

The objective of this problem is to maximize the utilization of 

resource material. There is a large range of the applicability of 

these problems as there are many diverse instances of it that are 

encountered in the industries as paper, glass, plastic and foam, 

leather, sheet metal cutting, furniture, garments, ship-building, 

shoe-making, car production, building materials, packaging etc.  

Most of the standard problems related to Nesting are known to be 

NP-complete.  The development of exact algorithms which are 

faster and produce near optimal solutions is still a major research 

issue in this area.   Proliferation of sophisticated desktops and 

faith of researchers in meta-heuristics have further allowed them 

to look beyond the traditional optimization techniques to solve 

this hard problem.  In this paper Authors have tried to explore 

further expansion in feasible patterns for rectangle packing by 

applying genetic operators on the initial population of feasible 

patterns generated by revised AYC Nee’s Rectangle Packing 

heuristic. 
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1. INTRODUCTION 
The rectangle-packing problem is the problem of placing several 

given rectangles of arbitrary width and height into a minimum 

area rectangle without overlapping. This rectangle packing 

problem (RPP) is investigated in a lot of publications [1, 2, 3, 4, 

and 5] because of its large practical relevance in both the two-

dimensional and three-dimensional case. Rectangle packing 

Problem can be applied to loading a set of rectangular objects 

onto a cargo pallet, with/ without stacking these objects. In the 

floor-plan design of VLSI, various chips are assigned to the 

physical regions of the printed circuit boards. Another 

application is cutting a set of rectangles out of a rectangular piece 

of stock material. The wood, the glass and the paper industry are 

mainly concerned with the cutting of regular figures (Figure 1).  

On the other hand, in shipbuilding, textile and leather industry 

irregular and arbitrary shaped items need to be packed (Figure 2 

& Fig. 3). The RPP falls in NP-complete problems class where 

computation time for an exact solution increases with N and 

become rapidly prohibitive in cost as N increases.  The solution 

approach to these problems lies in reducing the exhaustive search 

of all possible arrangements of nesting the parts and 

subsequently checking upon the execution time. Usually, various 

heuristic rules are proposed to generate different patterns, which 

are generally the priority rules used to allocate patterns to the 

stock sheet sequentially. 

In this paper author used revised AYC Nee’s Rectangle packing 

heuristic [7] to generate 120 feasible patterns. These feasible 

solutions are then used to find the optimal answers for a given 

instance of RPP using genetic optimization techniques. 

 

 

Figure 1Cutting of Regular Parts (All rectangular parts) 

from a Rectangular Sheet [6] 

 

 
 

Figure 2 Cutting of Irregular Parts from an Irregular Stock 

Sheet [6] 

 

 
 

Figure 3 Cutting of Irregular Parts from a Rectangular Stock 

Sheet [6] 
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2. BRIEF SYNOPSIS OF   THE REVISED 

AYC NEE’S RECTANGLE PACKING 

HEURISTIC 
An heuristic study which is focused to 2D rectangular packing 

problem where rectangular items (relatively smaller in size) are 

packed on to a larger containing region, which is rectangular in 

shape, say object has been discussed in by the authors [7]  The 

specific problem addressed is characterised by a set of 

rectangular items, which may contain identical items that can be 

rotated by 90° during packing process; packing arrangements are 

non-guillotine and orthogonal and the stock sheet is rectangular 

in shape, without any bad patches in it. Also, grain orientation of 

the item and object are trivial. The packing process has to ensure 

that there is no overlap of items while confining within the object. 

Brief description of the heuristic is as: - 

1. The items are first sequenced. The criteria for sequencing is 

based on the all possible aspects related to a rectangle e.g., 

length, width, area, perimeter, length/ width ratio, or priority 

assigned to items. This priority is expressed in terms of 

urgency for an ordered piece or profit associated with it. 

The lists are sorted in increasing order and in decreasing 

order. 

2. The item thus picked first is placed horizontally and then 

vertically at the lower left corner of the object, referred to as 

its reference point (Figure 4). Also, it is important to define 

here Sheet Utilization Ratio as the sum of total area of all 

items placed on the stock sheet to total stock sheet area. The 

item placed at reference point of the object gives rise to two 

pivot points. Pivot points are the top-left and bottom-right 

corner of the ordered piece placed and the top-left and 

bottom-right corners of enclosing rectangle that encloses all 

ordered pieces placed so far. Essentially, pivot points are the 

only probable positions where next item in sequence can be 

placed. The next item is then placed at each of the pivot 

points, both length-wise and breadth-wise for all feasible 

results. Orientations that result in minimum wastage are 

retained. New pivot points are defined and used ones are 

deleted. Systematic Search for the Best Position of the 

Second Rectangle is illustrated in Figure 5.  In the algorithm, 

pivot points are sequenced in the following three ways: - 

a. minimum radial distance (PPD) 

b. minimum x-distance, in case of tie, point with 

minimum y-distance is to be served first (PPL) 

c. minimum y-distance, in case of tie, point with 

minimum x-distance is to be served first (PPB) 

3. This process is repeated until every rectangle has been 

placed. 

4. The object is also placed in both the orientations. 

Total number of feasible layouts thus possible are the product of 

possible orientations of the Object (2) X possible orientations of 

the first Item placed on the Object (2) X possible sequencing 

patterns (increasing and decreasing) (2) X different basis for 

sequencing of items considered (5) X different sequencings of 

pivot points (along) considered (3) = 2 X 2 X 2 X 5 X 3 = 120; 

Thus OL-IL-I-SL-PPD stands for pattern obtained when Object 

is oriented Length-wise; first-Item placed on the reference point 

is also oriented Length-wise; items are sorted in Increasing order 

and are Sequenced on the basis of Length; Pivot Points are 

arranged in increasing order along the Diagonal of the object. 

 

3. SYNOPSIS OF GENETIC ALGORITHMS  
Genetic Algorithms (GA) were developed by John Holland [8] 

and since then have been used in various fields of engineering. 

GA has been used quite successfully for combinatorial problems 

that are NP-complete. GAs have been used in a wide variety of 

optimisation tasks, including numerical optimisation, and 

combinatorial optimisation problems such as travelling salesman 

problem (TSP) [9] packing problem [1, 10, 11], job shop 

scheduling [12] and video & sound quality optimisation. A 

genetic algorithm is a randomized parallel search method 

modelled on natural selection and genetics [13]. In contrast to 

more standards search algorithms, GA bases their progress on the 

performance of a population of candidate solutions, rather than 

on a single candidate solution. The motivation behind this is that 

by simultaneously searching many areas of the design space the 

risk of getting stuck at local optima is greatly reduced. GA are 

probabilistic in nature and start off with a population of 
randomly generated candidates and evolve toward better 

solutions by applying genetic operators, modelled on the natural 

genetic process.  For solving any problem, Genetic Algorithm is 

started with a set of solutions (represented by chromosomes) 

called population. A member of the population is a genotype, a 

chromosome, a string or a permutation. In our case, a 

chromosome is feasible pattern of Rectangle packing obtained by 

applying the modified heuristic. Solutions from one population 

are taken and used to form a new population. This is motivated 

with a hope, that the new population will be better than the old 

one. Solutions which are selected to form new solutions 

(offspring) are selected according to their fitness - the more 

suitable they are the more chances they have to reproduce.  When 

a genotype is decoded, a packing pattern, called a phenotype, is 

formed. We may calculate the fitness function even to restrict the 

mutating parents. A GA generally has five components [14] 

1. A representation for solutions to the problem  

2. A method to create initial population  

3. An evaluation function to determine the relative 

fitness of the solutions  

4. Genetic operators that effect the composition of 

the offspring during reproduction and  

5. Values for parameters that the GA uses (e.g. 

population size, probabilities of applying the 

genetic operators, etc.)  
 

4. HYPOTHESIS 
The solutions obtained by revised heuristic are exhaustive/ 

complete and need not be mutated so as to look for even better 

feasible solutions. 

 

5. METHOD TO CREATE INITIAL 

POPULATION 
An initial population of chromosomes is generated at the start of 

the GA by using either heuristic or randomly. In this paper 

revised rectangle packing heuristic [7] is used to generate the 

initial population comprising of 120 feasible solutions. 

 

5.1 Encoding of a chromosome 
A chromosome represents a solution to the problem and is 

encoded as a vector of integer number that represents the order of 

the rectangle which is present in the given data set.  Each 

solution chromosome is made of n genes where each gene is a 

two tuple comprising, the rectangle number and total piece 

placed. 

Chromosome = (gene1; gene2; . . . ; genen_1; genen) 

The n genes are used to obtain the Rectangle Packing Sequence, 

RPS, which is going to be used by the placement strategy. For 
example Figure 6 displays a chromosome for solving a five-

rectangle packing problem. The decoding (mapping) of each 

chromosome into a RPS (Rectangle packing sequences) is 

accomplished by packing the rectangles in specific order.  It is 

interpreted as that feasible solution involves packing of 3 pieces 
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of item 1, 1 piece of item 2, 2 pieces of item 4, 1 piece if item 5 

and 3 pieces of item 3 using the rectangle packing heuristic. 

 
Figure 4 Placing first piece at sheet reference point.   

 

Figure 5 Systematic search for the best position of the 

second rectangle 

 (1,3) (2,1) (4,2) (5,1) (3,3) 

   Figure 6 Chromosome Example 

5.2 Evaluation function and relative fitness of 

the solutions  
The fitness function is defined over the genetic representation 

and measures the quality of  the represented solution. The fitness 

function is always problem dependent. A fitness function is a 

particular type of objective function that prescribes the optimality 

of a solution (that is, a chromosome) in a genetic algorithm so 

that that particular chromosome may be ranked against all the 

other chromosomes. The natural fitness function (measure of 

quality) for this type of problem is the value of the %Trim Loss 

or % Utilization factor given by  

%Trim Loss = (Unused area/ Stock rectangle area)*100 

%Utilization factor = (Used area/ Stock rectangle area)*100 

In this paper Utilization factor consider as a fitness function. 

6. GENETIC OPERATORS DEFINED 

THAT ARE USED FOR PRODUCING THE 

OFFSPRING 
The chromosome is a permutation of the rectangles and requires 

specialized operators. Many genetic algorithms for solving 

sequencing optimization problems, such as the traveling 

salesman problem, machine scheduling, vehicle routing, and 

others, use such a permutation representation. Several crossover 

operators have been proposed for the permutation representation, 

such as the partial-mapped crossover [15], the heuristic crossover 

[16], the order crossover [17], the cycle crossover [18], the 

position-based crossover [19], the order-based crossover [20] and 

the sub-tour exchange crossover [20]. Also, a number of 

mutation operators have been proposed, such as inversion 

mutation, insertion mutation, displacement mutation, reciprocal 

exchange mutation [21] and heuristic mutation [22]. In this study 

genetic algorithm used only crossover operator that is order 

based crossover (OBX).The OBX operates as follows. First a cut 

is determined. The left hand portion of the first chromosome will 

then be copied to the offspring the other position will then filled 

by unused genes of second chromosome (with respect to same 

order). The cut point lies after the 50% of TPP (Total piece 

placed) of first chromosome. Figure 7 illustrates the crossover 

operator of genetic algorithm.  

            Figure 7 Crossover operator of genetic algorithm 

 

7. EXPERIMENTAL SETUP  
So as to apply the genetic algorithm operator on the initial 

population generated by revised rectangle packing heuristic 

following three data sets (Table 1) were considered. 

 

Table 1 Data sets 

 

Note: L indicates Length, W is width and Qty is Quantity 

 

Chromosome: 1 

(10,3) (5,2) (9,3) (8,3) (4,1) (3,3) (7,0) (6,0) (2,0) (1,0) 

Chromosome: 2 

(1,1) (2,1) (3,3) (4,1) (5,0) (6,1) (7,0) (8,2) (9,1) (10,1) 

TPP of  first chromosome=15 Cut point recommended=15/2=8 

(10,3) (5,2) (9,3) (1,1) (2,1) (3,3) (4,1) (6,1) (7,0) (8,2) 

New generated chromosomes 

SET-I MOTHER SHEET_LENGTH=70 WIDTH=40 

S.No 1 2 3 4 5 6 7 8 9 10 

L 22 31 35 24 30 13 14 14 12 13 

W 21 13 9 9 7 11 10 8 8 7 

Qty 1 1 3 3 2 3 1 3 3 3 

SET-II MOTHER SHEET_LENGTH=593 WIDTH=100 

S.No 1 2 3 4 5 6 7 8 9 10 

L 96.87 120.8 125.5 120.4 105.7 114.7 119.2 119.2 150.4 161.1 

W 13.97 18.06 19.39 19.85 20.02 20.39 21.1 21.39 26.02 30.98 

Qty 3 1 2 2 4 1 3 3 1 2 

SET-III MOTHER SHEET_LENGTH=593 WIDTH=100 

S.No 1 2 3 4 5 6 7 8 9 10 

L 80.41 105.9 129 122.5 107.4 116.5 120.8 124.5 147.7 194.1 

W 11.6 15.84 19.94 20.21 20.34 20.69 21.38 22.29 25.56 37.32 

Qty 3 1 2 2 4 1 3 3 1 2 
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8. RESULTS AND DISCUSSIONS 
The revised heuristic is used to generate the 120 feasible patterns 

which are shown in Table 2, 3 and 4 for Set I, Set II and Set III 

respectively. Where Heuristic OL, OB indicates Orientation of 

Object in Length-wise and Breadth-wise direction. Heuristic IL, 

IB indicates Orientation of first item in Length-wise and 

Breadth-wise direction. PPL, PPB, PPD indicates sequencing 

Pivot Points along the Length, Breadth and Diagonal of the sheet 

and Heuristic OL-IL-D-SL-PPL indicates Orientation of Object 

is Length-wise and that of first Item placed is Length-wise; 

pieces are sequenced in Decreasing order on the basis of 

Sequencing basis Length and Pivot Points are sequenced in 

increasing order along the Length of the sheet; TPP is Total 

Piece Placed;   UF is Sheet Utilization factor. To start with the 

genetic algorithm, we considered the healthy chromosomes that 

have best utilization factor. Such healthy chromosomes with their 

respective utilization factor and total piece placed are listed in 

Table 5, 6 and 7 for Set I, Set II and Set III respectively. OBX 

operator was applied to generate new chromosome (Figure 8).  

The resulting feasible pattern is obtained by laying items on the 

object by applying revised heuristic algorithm. Accordingly 

layout for chromosome 1, Chromosome 2 and new generated 

chromosome is given in Figure 9, 10 and 11 respectively. 

Orientation of the object and item are now only important aspects 

to obtain different layouts as the sequence is not be altered at all.  

A number of off-springs were mutated.  The genetically 

produced chromosome was observed to be even better [94.6 % 

(Set-I)] than the participating parents [86.80%, 92.10 % (Set-I)].  

  

                                Table 2 Performance of different heuristics for dataset 1 

 

# 

    OL-IL OB-IL OL-IB OB-IB 

ORDER SPP TPP UF(%) TPP UF(%) TPP UF(%) TPP UF(%) 

        I.      D-SA PPB 9 85.9 10 89.9 11 92.1 9 85.9 

        II.       D-SA PPD 9 85.9 10 89.9 11 92.1 9 85.9 

      III.       D-SA PPL 9 85.9 10 89.9 11 92.1 9 85.9 

      IV.       D-SAR PPB 12 85.6 11 81.6 11 81.6 11 81.6 

        V.      D-SAR PPD 12 85.6 11 81.6 11 81.6 11 81.6 

      VI.       D-SAR PPL 12 85.6 11 81.6 11 81.6 11 81.6 

    VII.       D-SB PPB 11 78.6 15 91.8 14 88.7 14 88.7 

  VIII.       D-SB PPD 11 78.6 15 91.8 14 88.7 14 88.7 

      IX.       D-SB PPL 11 78.6 15 91.8 14 88.7 14 88.7 

        X.      D-SL PPB 9 86.3 10 86.8 10 86.8 9 82.6 

      XI.       D-SL PPD 9 86.3 10 86.8 10 86.8 9 82.6 

    XII.       D-SL PPL 9 86.3 10 86.8 10 86.8 9 82.6 

  XIII.       D-SP PPB 7 79.6 9 85.7 10 87.9 7 79.6 

  XIV.       D-SP PPD 7 79.6 9 85.7 10 87.9 7 79.6 

    XV.       D-SP PPL 7 79.6 9 85.7 10 87.9 7 79.6 

  XVI.        I-SA PPB 16 75.1 16 75.1 17 82.8 15 67.4 

XVII.       I-SA PPD 16 75.1 16 75.1 17 82.8 15 67.4 

XVIII.       I-SA PPL 16 75.1 16 75.1 17 82.8 15 67.4 

 XIX.      I-SAR PPB 15 76.6 15 76.6 15 76.6 16 84.3 

   XX.        I-SAR PPD 15 76.6 15 76.6 15 76.6 16 84.3 

 XXI.        I-SAR PPL 15 76.6 15 76.6 15 76.6 16 84.3 

XXII.        I-SB PPB 15 88.5 14 80.8 14 80.8 15 85.8 

XXIII.       I-SB PPD 15 88.5 14 80.8 14 80.8 15 85.8 

XXIV.       I-SB PPL 15 88.5 14 80.8 14 80.8 15 85.8 

XXV.       I-SL PPB 15 76.6 15 76.6 15 76.6 15 76.6 

XXVI.       I-SL PPD 15 76.6 15 67.9 15 76.6 15 76.6 

XXVII.     I-SL PPL 15 76.6 15 67.9 15 76.6 15 76.6 

XXVIII.     I-SP PPB 17 83 16 75.3 16 75.5 16 75.3 

XXIX.       I-SP PPD 17 83 16 75.3 16 75.5 16 75.3 

XXX.       I-SP PPL 17 83 16 75.3 16 75.5 16 75.3 

Note: Heuristic OL-IL-D-SL-PPL indicates Orientation of Object is Length-wise and that of first Item placed is Length-wise; pieces 

are sequenced in Decreasing order on the basis of Sequencing basis Length and Pivot Points are sequenced in increasing order along 

the Length of the sheet; TPP is Total Piece Placed; UF is Sheet Utilization factor;  

                      Table 3 Performance of different heuristics for dataset II 

# 

    OL-IL OB-IL OL-IB OB-IB 

ORDER SPP TPP UF(%) TPP UF(%) TPP UF(%) TPP UF(%) 

        I.      D-SA PPB 17 75.81 3 6.85 3 6.85 17 78.76 
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        II.       D-SA PPD 17 75.81 3 6.85 3 6.85 17 78.76 

      III.       D-SA PPL 17 75.81 3 6.85 3 6.85 17 78.76 

      IV.       D-SAR PPB 17 75.81 3 6.85 3 6.85 16 76.48 

        V.      D-SAR PPD 17 75.81 3 6.85 3 6.85 16 76.48 

      VI.       D-SAR PPL 17 75.81 3 6.85 3 6.85 16 76.48 

    VII.       D-SB PPB 17 74.19 3 6.85 3 6.85 18 81.68 

  VIII.       D-SB PPD 17 74.19 3 6.85 3 6.85 18 81.68 

      IX.       D-SB PPL 17 74.19 3 6.85 3 6.85 18 81.68 

        X.      D-SL PPB 16 71.57 3 6.85 3 6.85 16 76.48 

      XI.       D-SL PPD 16 71.57 3 6.85 3 6.85 16 76.48 

    XII.       D-SL PPL 16 71.57 3 6.85 3 6.85 16 76.48 

  XIII.       D-SP PPB 17 75.81 3 6.85 3 6.85 16 76.48 

  XIV.       D-SP PPD 17 75.81 3 6.85 3 6.85 16 76.48 

    XV.       D-SP PPL 17 75.81 3 6.85 3 6.85 16 76.48 

  XVI.        I-SA PPB 19 70.6 17 62.02 17 62.02 19 70.6 

XVII.       I-SA PPD 19 70.6 17 62.02 17 62.02 19 70.6 

XVIII.       I-SA PPL 19 70.6 17 62.02 17 62.02 19 70.6 

 XIX.      I-SAR PPB 18 75.2 3 6.85 3 6.85 17 78.97 

   XX.        I-SAR PPD 18 75.2 3 6.85 3 6.85 17 78.97 

 XXI.        I-SAR PPL 18 75.2 3 6.85 3 6.85 17 78.97 

XXII.        I-SB PPB 17 62.02 17 62.02 17 62.02 19 70.6 

XXIII.       I-SB PPD 17 62.02 17 62.02 17 62.02 19 70.6 

XXIV.       I-SB PPL 17 62.02 17 62.02 17 62.02 19 70.6 

XXV.       I-SL PPB 19 70.6 19 70.6 19 70.6 18 66.49 

XXVI.       I-SL PPD 19 70.6 19 70.6 19 70.6 18 66.49 

XXVII.     I-SL PPL 19 70.6 19 70.6 19 70.6 18 66.49 

XXVIII.     I-SP PPB 19 70.6 19 70.6 19 70.6 19 70.6 

XXIX.       I-SP PPD 19 70.6 19 70.6 19 70.6 19 70.6 

XXX.       I-SP PPL 19 70.6 19 70.6 19 70.6 19 70.6 

Note: Heuristic OL-IL-D-SL-PPL indicates Orientation of Object is Length-wise and that of first Item placed is Length-wise; pieces 

are sequenced in Decreasing order on the basis of Sequencing basis Length and Pivot Points are sequenced in increasing order along 

the Length of the sheet; TPP is Total Piece Placed; UF is Sheet Utilization factor;  

                           Table 4 Performance of different heuristics for dataset III 

# 

ORDER SPP OL-IL OB-IL OL-IB OB-IB 

TPP UF(%) TPP UF(%) TPP UF(%) TPP UF(%) 

          I.        D-SA PPL 17 85.82 3 4.71 3 4.71 17 82.47 

        II.        D-SA PPW 17 85.82 3 4.71 3 4.71 17 82.47 

      III.        D-SA PPD 17 85.82 3 4.71 3 4.71 17 82.47 

      IV.        D-SAR PPL 19 73.16 17 65.79 17 65.79 18 69.48 

        V.        D-SAR PPW 19 73.16 17 65.79 17 65.79 18 69.48 

      VI.        D-SAR PPD 19 73.16 17 65.79 17 65.79 18 69.48 

    VII.        D-SB PPL 16 82.44 3 4.71 3 4.71 17 81.22 

  VIII.        D-SB PPW 16 82.44 3 4.71 3 4.71 17 81.22 

      IX.        D-SB PPD 16 82.44 3 4.71 3 4.71 17 81.22 

        X.        D-SL PPL 17 82.47 3 4.71 3 4.71 17 82.47 

      XI.        D-SL PPW 17 82.47 3 4.71 3 4.71 17 82.47 

    XII.        D-SL PPD 17 82.47 3 4.71 3 4.71 17 82.47 

  XIII.        D-SP PPL 17 82.47 3 4.71 3 4.71 17 82.47 

  XIV.        D-SP PPW 17 82.47 3 4.71 3 4.71 17 82.47 

    XV.        D-SP PPD 17 82.47 3 4.71 3 4.71 17 82.47 

  XVI.        I-SA PPL 19 70.48 17 61.12 17 61.12 19 72.17 
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XVII.        I-SA PPW 19 70.48 17 61.12 17 61.12 19 72.17 

XVIII.        I-SA PPD 19 70.48 17 61.12 17 61.12 19 72.17 

 XIX.        I-SAR PPL 18 82.06 3 4.71 3 4.71 18 73.52 

   XX.        I-SAR PPW 18 82.06 3 4.71 3 4.71 18 73.52 

 XXI.        I-SAR PPD 18 82.06 3 4.71 3 4.71 18 73.52 

XXII.        I-SB PPL 19 70.48 17 61.12 17 61.12 20 76.85 

XXIII.        I-SB PPW 19 70.48 17 61.12 17 61.12 20 76.85 

XXIV.        I-SB PPD 19 70.48 17 61.12 17 61.12 20 76.85 

XXV.        I-SL PPL 19 70.48 18 65.8 18 65.8 19 70.48 

XXVI.        I-SL PPW 19 70.48 18 65.8 18 65.8 19 70.48 

XXVII.        I-SL PPD 19 70.48 18 65.8 18 65.8 19 70.48 

XXVIII.        I-SP PPL 19 70.48 18 65.8 18 65.8 19 70.48 

XXIX.        I-SP PPW 19 70.48 18 65.8 18 65.8 19 70.48 

XXX.        I-SP PPD 19 70.48 18 65.8 18 65.8 19 70.48 

Note: Heuristic OL-IL-D-SL-PPL indicates Orientation of Object is Length-wise and that of first Item placed is Length-wise; pieces 

are sequenced in Decreasing order on the basis of Sequencing basis Length and Pivot Points are sequenced in increasing order along 

the Length of the sheet; TPP is Total Piece Placed; UF is Sheet Utilization factor;  

Table 5 Chromosomes considered for crossover on the basis 

of relative fitness (SET-I) 
Order  Chromosome UF (%) TPP 

D-SA (1,1) (2,1) (3,3) (4,1) (5,0) (6,1) (7,0) (8,2) (9,1) (10,1) 92.10% 11 

D-SB (1,1) (2,1) (6,3) (7,1) (4,2) (3,0) (9,1) (8,3) (10,1) (5,0) 91.80% 15 

I-SB (10,3) (5,2) (9,3) (8,3) (4,1) (3,3) (7,0) (6,0) (2,0) (1,0) 88.50% 15 

D-SP (2,1) (3,3) (1,1) (5,1) (4,0) (6,1) (7,0) (8,1) (9,1) (10,1) 87.90% 10 

D-SL (3,3) (2,1) (5,2) (4,2) (1,0) (8,0) (7,1) (10,1) (6,0) (9,0) 86.80% 10 

D-SAR (5,2) (3,3) (4,3) (2,0) (10,3) (8,1) (9,0) (7,0) (6,0) (1,0) 85.60% 12 

I-SAR (1,1) (6,3) (7,3) (9,3) (8,1) (10,3) (2,0) (4,2) (3,0) (5,0) 84.30% 16 

I-SP (9,3) (10,3) (8,3) (6,3) (7,1) (4,3) (5,1) (1,0) (2,0) (3,0) 83.00% 17 

I-SA (10,3) (9,3) (8,3) (7,1) (6,3) (5,2) (4,2) (3,0) (2,0),(1,0) 82.80% 17 

 
Table 6 chromosomes considered for crossover on the basis 

of relative fitness (SET-II) 

Order Chromosome UF (%) TPP 

D-SA (10,2) (9,1) (8,3) (7,3) (3,2) (4,2) (6,1) (2,1) (5,1) (1,1) 78.76% 17 

D-SB (10,2) (9,1) (8,3) (7,3) (6,1) (5,4) (4,2) (3,1) (2,0) (1,1) 81.68% 18 

D-SL (10,2) (9,1) (3,2) (2,1) (4,2) (8,3) (7,2) (6,0) (5,0) (1,3) 71.57% 16 

D-SP (10,2) (9,1) (3,2) (8,3) (7,3) (4,2) (2,1) (6,0) (5,0) (1,3) 75.81% 17 

I-SA (1,3) (5,4) (2,1) (6,1) (4,2) (3,2) (7,3) (8,3) (9,0) (10,0) 70.59% 19 

I-SAR (10,2) (5,4) (8,3) (6,1) (7,3) (9,1) (4,2) (3,0) (2,1) (1,0) 78.97% 17 

I-SL (1,3) (5,4) (6,1) (7,3) (8,3) (4,2) (2,1) (3,1) (9,0) (10.0) 66.49% 18 

 

Table 7 chromosomes considered for crossover on the basis 

of relative fitness (SET-III) 
Order Chromosome UF(%) TPP 

D-SA (10,2) (9,1) (8,3) (7,3) (3,2) (4,2) (6,1) (5,1) (2,0) (1,2) 85.82% 17 

D-SAR (10,0) (9,1) (3,2) (8,3) (4,2) (7,3) (6,1) (5,3) (2,1) (1,3) 73.16% 19 

D-SB (10,2)(9,1) (8,3) (7,3) (6,1) (5,4) (4,1) (3,0) (2,0) (1,1) 82.45% 16 

D-SL (10,2) (9,1) (3,2) (8,3) (4,2) (7,3) (6,0) (5,0) (2,1) (1,3) 82.47% 17 

I-SA (1,2) (2,1) (5,4) (6,1) (4,2) (3,2) (7,3) (8,2) (9,1) (10,0) 72.17% 19 

I-SAR (10,2) (5,4) (8,3) (6,1) (7,3) (9,0) (4,1) (3,0) (2,1) (1,3) 82.06% 18 

I-SL (1,3) (2,1) (3,2) (4,2) (5,4) (6,1) (7,3) (8,3) (9,0) (10,0) 70.48% 19 

I-SB (1,3) (2,1) (3,2) (4,2) (5,4) (6,1) (7,3) (8,3) (9,1) (10,0) 76.85% 20 

I-SP (1,3) (2,1) (5,4) (6,1) (7,3) (4,2) (8,2) (3,2) (9,0) (10,0) 65.8% 18 

 

                 Figure 8 Ordered Based Crossover (OBX)         

                    Operator for Set  I 

 
Figure 9 Layout (Chromosome 1) generated by Revised 

Rectangle Packing Algorithm UF= 86.8% TPP=10 

 

9. CONCLUSIONS 
The rectangle packing (other synonyms to packing are nesting 

and cutting) is a peculiar engineering problem with no 

mathematical descriptors for the process.  There are infinite 

possible solutions for most of the problems but no unique, tightly 

fitting solution can normally be expected. Time needed to find 

the cutting pattern with the least amount of stock sheet wastage 

increases exponentially with the getting higher in number of 

different types of items used in the problem. This phenomenon is 

commonly known as combinatorial explosion. In this paper a 

revised heuristic rectangle packing algorithm is used to generate 

the different layout with different sheet Utilization factor. 

Chromosome: 1    TPP=10 Utilization Factor:86.80% 

(3,3) (2,1) (5,2) (4,2) (1,0) (8,0) (7,1) (10,1) (6,0) (9,0) 

Chromosome: 2     TPP=11 Utilization Factor:92.10%               

 (1,1) (2,1) (3,3) (4,1) (5,0) (6,1) (7,0) (8,2) (9,1) (10,1) 

TPP of  first chromosome=10 Cut point lie=10/2=5 

New Chromosome:              Utilization Factor: 94.5% 

 (3,3) (2,1) (5,2) (1,1) (4,1) (6,1) (7,0) (8,2) (9,1) (10,1) 
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Attempts have been successful to further expand set of feasible 

patterns for rectangle packing by applying genetic operators on 

the initial population of feasible patterns generated by revised 

AYC Nee’s Rectangle Packing heuristic.  However, empirical 

studies carried out though confirm paltry success stories only so 

as to reject the null hypothesis.  
 

 

Figure 10 Layout (Chromosome 2) generated by Revised 

Rectangle Packing Algorithm UF= 92.1% TPP=11 

 

 

Figure 11 Layout generated by Genetic Algorithm  

UF= 94.6% TPP=10 
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