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ABSTRACT 
This paper provides an in-depth description of MapReduce 

algorithm and Nutch Distributed File System in Nutch web 
search engine. Nutch is an open-source Web search engine 

that can be used at global, local, and even personal scale.  To 

engineer a search engine is a challenging task. Search engines  

index tens to hundreds of millions of web pages involving a 

comparable number of distinct terms. They answer tens of 
millions of queries every day. Despite the importance of 

large-scale search engines  on the web, very little academic 

research has been done on them. Furthermore, due to rapid 

advance in technology and web proliferation, creating a web 

search engine today is very different from ten years ago.  
 

1. INTRODUCTION 
The web creates new challenges for information retrieval. The 
amount of information on the web is growing rapidly, as well 

as the number of new users inexperienced in the art of web 

research. People are likely to surf the web using search 

engines. Automated search engines that rely on keyword 

matching usually return too many low quality matches. 
MapReduce is a software framework that allows developers to 

write programs that process massive amounts of unstructured 

data in parallel across a distributed cluster of processors or 

stand-alone computers. It was developed at Google for 

indexing Web pages and replaced their original indexing 
algorithms and heuristics in 2004. The Distributed Nutch File 

System, a set of software for storing very large stream-

oriented files over a set of commodity computers. 

 

2. NEED FOR LARGE DATA 

PROCESSING 
We live in the data age. It’s not easy to measure the total 

volume of data stored electronically.  The problem is that 

while the storage capacities of hard drives have increased 

massively over the years, access speeds—the rate at which 
data can be read from drives have not kept up. One typical 

drive from 1990 could store 1370 MB of data and had a 

transfer speed of 4.4 MB/s,§ so we could read all the data 

from a full drive in around five minutes. Almost 20 years later 

one terabyte drives are the norm, but the transfer speed is 
around 100 MB/s, so it takes more than two and a half hours 

to read all the data off the disk. This is a long time to read all 

data on a single drive—and writing is even slower. The 

obvious way to reduce the time is to read from multiple disks 

at once. Imagine if we had 100 drives, each holding one 
hundredth of the data. Working in parallel, we could read the 

data in  

 

less than two minutes. This shows the significance of 

distributed computing.  

3. CHALLENGES IN DISTRIBUTED 

COMPUTING – MEETING NUTCH 
Various challenges are faced while developing a distributed 

application. The first problem to solve is hardware failure: as  

soon as we start using many pieces of hardware, the chance 

that one will fail is fairly high. A common way of avoiding 
data loss is through replication: redundant copies of the data 

are kept by the system so that in the event of failure, there is 

another copy available. This is how RAID works, for instance, 

although Nutchfilesystem, the Nutch Distributed 

Filesystem(NDFS), takes a slightly different approach. 

The second problem is that most analysis tasks need to be able 

to combine the data in some way; data read from one disk 

may need to be combined with the data from any of the other 

99 disks. Various distributed systems allow data to be 

combined from multiple sources, but doing this correctly is 
notoriously challenging. MapReduce provides a programming 

model that abstracts the problem from disk reads and writes 

transforming it into a computation over sets of keys and 

values.  

This, in a nutshell, is what Nutch provides: a reliable shared 
storage and analysis system. The storage is provided by 

NDFS, and analysis by MapReduce. There are other parts to 

Nutch, but these capabilities are its kernel.  

Nutch is the popular open source implementation of 
MapReduce, a powerful tool designed for deep analysis and 

transformation of very large data sets. Nutch enables you to 

explore complex data, using custom analyses tailored to your 

information and questions. Nutch has its own filesystem 

which replicates data to multiple nodes to ensure  if one node 
holding data goes down, there are at least 2 other nodes from 

which to retrieve that piece of information.  This protects the 

data availability from node failure, something which is critical 

when there are many nodes in a cluster (aka RAID at a server 

level).  

4. ORIGIN OF NUTCH 
Nutch was created by Doug Cutting, the creator of Apache 

Lucene, the widely used text search library. Nutch an open 
source web search engine, itself a part of the Lucene project. 

Building a web search engine from scratch was an ambitious 

goal, for not only is the software required to crawl and index 

websites complex to write, but it is also a challenge to run 

without a dedicated operations team, since there are so many 
moving parts. Nutch was started in 2002, and a working 

crawler and search system quickly emerged. However, they 

realized that their architecture wouldn’t scale to the billions of 

pages on the Web. Help was at hand with the publication of a 
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paper in 2003 that described the architecture of Google’s  

distributed filesystem, called GFS, which was being used in 

production at Google.# GFS, or something like it, would solve 
their storage needs for the very large files generated as a part 

of the web crawl and indexing process. In particular, GFS 

would free up time being spent on administrative tasks such as 

managing storage nodes. In 2004, they set about writing an 

open source implementation, the Nutch Distributed 
Filesystem (NDFS). In 2004, Google published the paper that 

introduced MapReduce to the world. Early in 2005, the Nutch 

developers had a working MapReduce implementation in 

Nutch, and by the middle of that year all the major Nutch 

algorithms had been ported to run using MapReduce and 
NDFS. NDFS and the MapReduce implementation in Nutch 

were applicable beyond the realm of search.  

5 . IMPLEMENTATION OF 

MAPREDUCE 
The framework is divided into two parts: 

Map, a function that parcels out work to different nodes in the 
distributed cluster. 

Reduce, another function that collates the work and resolves  

the results into a single value.  

MapReduce is a programming model and an associated 

implementation for processing and generating largedata sets. 
Users specify a map function that processes a key/value pair 

to generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with 

the same intermediate key. Many real world tasks are 

expressible in this model.  

These abstractions are inspired by the map and reduce 

primitives present in Lisp and many other functional 

languages. We realized that most of our computations 

involved applying a map operation to each logical .record. In 

our input in order to compute a set of intermediate key /value 
pairs, and then applying a reduce operation to all the values 

that shared the same key, in order to combine the derived data 

appropriately. Our use of a functional model with user 

specialized map and reduce operations allows us to parallelize 

large computations easily and to use re-execution as the 
primary mechanism for fault tolerance.  

5.1   Programming Model 

The computation takes a set of input key/value pairs, and 
produces a set of output key/value pairs. The user of the 

MapReduce library expresses the computation as two 

functions: Map and Reduce. Map, written by the user, takes 

an input pair and produces a set of intermediate key/value 

pairs. The MapReduce library groups together all intermediate 
values associated with the same intermediate key I and passes 

them to the Reduce function. The Reduce function, also 

written by the user, accepts an intermediate key I and a set of 

values for that key. It merges together these values to form a 

possibly smaller set of values. Typically just zero or one 
output value is produced per Reduce invocation. The 

intermediate values are supplied to the user's reduce function 

via an iterator. This allows us to handle lists of values that are 

too large to fit in memory. 

 

5.1.1   Map 
map (in_key, in_value) -> (out_key, intermediate_value) list 

 

 

 

 

 

 

 

 

 

 

 

Example: Upper-case Mapper 

let map(k, v) = emit(k.toUpper(), v.toUpper()) 

(“foo”, “bar”)   --> (“FOO”, “BAR”) 

(“Foo”, “other”) -->(“FOO”, “OTHER”) 

(“key2”, “data”) --> (“KEY2”, “DATA”) 

 

5.1.2   Reduce 

reduce (out_key, intermediate_value list) ->out_value list 

 

 

 

 

 

 

 

 

Example: Sum Reducer  

let reduce(k, vals)  

sum = 0 

for each int v in vals: 

sum += v 

emit(k, sum) 

(“A”, [42, 100, 312]) -->   (“A”, 454) 

(“B”, [12, 6, -2])  -->  (“B”, 16) 

Example2:- 

Counting the number of occurrences of each word in a large 

collection of documents. The user would write code similar to 

the following pseudo-code: 

map(String key, String value): 

// key: document name 

// value: document contents 

for each word w in value: 

EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

// key: a word 

// values: a list of counts 
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int result = 0; 

for each v in values: 

result += ParseInt(v); 

Emit(AsString(result)); 

The map function emits each word plus an associated count of 

occurrences (just `1' in this simple example). The reduce 

function sums together all counts emitted for a particular 

word. 

In addition, the user writes code to fill in a mapreduce 

specification object with the names of the input and output 

files, and optional tuning parameters. The user then invokes 

the MapReduce function, passing it the specification object. 

The user's code is linked together with the MapReduce library 
(implemented in C++) 

Programs written in this functional style are automatically 

parallelized and executed on a large cluster of commodity 

machines. The run-time system takes care of the details of 

partitioning the input data, scheduling the program's execution 
across a set of machines, handling machine failures,  

and managing the required inter-machine communication. 

This allows programmers without any experience with 

parallel and distributed systems to easily utilize the resources 

of a large distributed system.  

The issues of how to parallelize the computat ion, distribute 

the data, and handle failures conspire to obscure the original 

simple computation with large amounts of complex code to 
deal with these issues. As a reaction to this complexity, 

Google designed a new abstraction that allows us to express 

the simple computations we were trying to perform but hides 

the messy details of parallelization, fault-tolerance, data 

distribution and load balancing in a library.  

5.2    Types 

Even though the previous pseudo-code is written in terms of 

string inputs and outputs, conceptually the map and reduce 
functions supplied by the user have associated 

types: 

map (k1,v1) ! list(k2,v2) 

reduce (k2,list(v2)) ! list(v2) 

I.e., the input keys and values are drawn from a different 
domain than the output keys and values. Furthermore, the 

intermediate keys and values are from the same domain as the 

output keys and values. Our C++ implementation passes 

strings to and from the user-de_ned functions and leaves it to 

the user code to convert between strings and appropriate 
types. 
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Inverted Index: The map function parses each document, and 

emits a sequence of hword; document IDi pairs. The reduce 

function accepts all pairs for a given word, sorts the 
corresponding document IDs and emits a hword; 

list(document ID)i pair. The set of all output pairs forms a 

simple inverted index. It is easy to augment this computation 

to keep track of word positions. 

Distributed Sort: The map function extracts the key from each 
record, and emits a hkey; recordi pair. The reduce function 

emits all pairs unchanged.  

5.3    NutchMapReduce  
Nutch Map-Reduce is a software framework for easily writing 

applications which process vast amounts of data (multi-

terabyte data-sets) in-parallel on large clusters (thousands of 

nodes) of commodity hardware in a reliable, fault -tolerant 

manner. 

 A Map-Reduce job usually splits the input data-set into 

independent chunks which are processed by the map tasks in a 

completely parallel manner. The framework sorts the outputs 

of the maps, which are then input to the reduce tasks. 

Typically both the input and the output of the job are stored in 

a file-system. The framework takes care of scheduling tasks, 

monitoring them and re-executes the failed tasks. 

Typically the compute nodes and the storage nodes are the 
same, that is, the Map-Reduce framework and the Distributed 

FileSystem are running on the same set of nodes. This 

configuration allows the framework to effectively schedule 

tasks on the nodes where data is already present , resulting in 

very high aggregate bandwidth across the cluster. 

 A MapReduce job is a unit of work that the client wants to be 

performed: it consists of the input data, the MapReduce 

program, and configuration information. Nutch runs the job 

by dividing it into tasks, of which there are two types: map 

tasks and reduce tasks. There are two types of nodes that 
control the job execution process: a jobtracker and a number 

of tasktrackers. The jobtracker coordinates all the jobs run on 

the system by scheduling tasks to run on tasktrackers. 

Tasktrackers run tasks and send progress reports to the 

jobtracker, which keeps a record of the overall progress of 
each job. If a tasks fails, the jobtracker can reschedule it on a 

different tasktracker. Nutch divides the input to a MapReduce 

job into fixed-size pieces called input splits, or just splits. 

Nutch creates one map task for each split, which runs the 

userdefined map function for each record in the split.
 

Having many splits means the time taken to process each split 

is small compared to the time to process the whole input. So if 

we are processing the splits in parallel, the processing is better 
load-balanced if the splits are small, since a faster machine 

will be able to process proportionally more splits over the 

course of the job than a slower machine. Even if the machines  

are identical, failed processes or other jobs running 
concurrently make load balancing desirable, and the quality of 

the load balancing increases as the splits become more fine-

grained. On the other hand, if splits are too small, then the 

overhead of managing the splits and of map task creation 

begins to dominate the total job execution time. For most jobs, 
a good split size tends to be the size of a NDFS block, 64 MB 

by default, although this can be changed for the cluster (for all 

newly created files), or specified when each file is created. 

Nutch does its best to run the map task on a node where the 

input data resides in NDFS. This is called the data locality 
optimization. It should now be clear why the optimal split size 

is the same as the block size: it is the largest size of input that 

can be guaranteed to be stored on a single node. If the split 

spanned two blocks, it would be unlikely that any NDFS node 

stored both blocks, so some of the split would have to be 
transferred across the network to the node running the map 

task, which is clearly less efficient than running the whole 

map task using local data. Map tasks write their output to 

local disk, not to NDFS. Map output is intermediate output: 

it’s processed by reduce tasks to produce the final output, and 

once the job is complete the map output can be thrown away. 
So storing it in NDFS, with replication, would be overkill. If 

the node running the map task fails before the map output has 

been consumed by the reduce task, then Nutch will 

automatically rerun the map task on another node to recreate 
the map output. Reduce tasks don’t have the advantage of data 

locality—the input to a single reduce task is normally the 

output from all mappers. In the present example, we have a 

single reduce task that is fed by all of the map tasks. 

Therefore the sorted map outputs have to be transferred across 
the network to the node where the reduce task is running, 

where they are merged and then passed to the user-defined 

reduce function. The output of the reduce is normally stored 

in NDFS for 

reliability. For each NDFS block of the reduce output, the first 
replica is  stored on the local node, with other replicas being 

stored on off-rack nodes. Thus, writing the reduce output does 

consume network bandwidth, but only as much as a normal 

NDFS write pipeline consume. The dotted boxes in the figure 

below indicate nodes, the light arrows show data transfers on 
a node, and the heavy arrows show data transfers between 
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nodes. The number of reduce tasks is not governed by the size 

of the input, but is specified independently.  

When there are multiple reducers, the map tasks partition their 
output, each creating one partition for each reduce task. There 

can be many keys (and their associated values) in each 

partition, but the records for every key are all in a single 

partition. The partitioning can be controlled by a user-defined 

partitioning function, but normally the default partitioner—
which buckets keys using a hash function—works very well. 

This diagram makes it clear why the data flow between map 

and reduce tasks is colloquially known as “the shuffle,” as  

each reduce task is fed by many map tasks. The shuffle is 

more complicated than this diagram suggests, and tuning it 
can have a big impact on job execution time. Finally, it’s also 

possible to have zero reduce tasks. This can be appropriate 

when you don’t need the shuffle since the processing can be 

carried out entirely in parallel.  

5.4    Combiner Functions 
Many MapReduce jobs are limited by the bandwidth available 

on the cluster, so it pays to minimize the data transferred 

between map and reduce tasks. Nutch allows the user to 
specify a combiner function to be run on the map output—the 

combiner function’s output forms the input to the reduce 

function. Since the combiner function is an optimization, 

Nutch does not provide a guarantee of how many times it will 

call it for a particular map output record, if at all. In other 
words, calling the combiner function zero, one, or many times 

should produce the same output from the reducer.  

5.5    Nutch Streaming 
Nutch provides an API to MapReduce that allows you to write 

your map and reduce functions in languages other than Java. 

Nutch Streaming uses Unix standard streams as the interface 

between Nutch and your program, so you can use any 

language that can read standard input and write to standard 
output to write your M apReduce program. Streaming is  

naturally suited for text processing (although as of version 

0.21.0 it can handle binary streams, too), and when used in 

text mode, it has a line-oriented view of data. Map input data 

is passed over standard input to your map function, which 
processes it line by line and writes lines to standard output. A 

map output key-value pair is written as a single tab-delimited 

line. Input to the reduce function is in the same format—a tab-

separated key-value pair—passed over standard input. The 

reduce function reads lines from standard input, which the 
framework guarantees are sorted by  key, and writes its results 

to standard output.  

6. NUTCH DISTRIBUTED FILE 

SYSTEM(NDFS) 
Filesystems that manage the storage across a network of 

machines are called distributed filesystems. Since they are 
network-based, all the complications of network programming 

kick in, thus making distributed filesystems more complex 

than regular disk filesystems. For example, one of the biggest 

challenges is making the filesystem tolerate node failure 

without suffering data loss. Nutch comes with a distributed 
filesystem called NDFS, which stands for Nutch Distributed 

Filesystem. 

NDFS, the Nutch Distributed File System, is a distributed file 

system designed to hold very large amounts of data (terabytes 

or even petabytes), and provide high-throughput access to this 
information. Files are stored in a redundant fashion across 

multiple machines to ensure their durability to failure and 

high availability to very parallel applications.  

6.1   NDFS Filesystem Semantics 
Files can only be written once. After the first write, they 

become read-only. (Although they can be deleted.)  

Files are stream-oriented; you can only append bytes, and you 

can only read/seek forward.  

There are no user permissions or quotas, although these could 
be added fairly easily.  

So, all access to the NDFS system is through approved client 

code. There is no plan to create an OS-level library to allow 

any program to access the system. Nutch is the model user, 

although there are probably many applications that could take 
advantage of NDFS. (Pretty much anything that has very large 

stream-oriented files would find it useful, such as data mining, 

text mining, or media-oriented applications.) 

6.2   System Design 
There are two types of machines in the NDFS system:  

1) Namenodes, which manage the file namespace  

2) Datanodes, which actually store blocks of data  

The NDFS namespace has a single Namenode which defines  
it. There can be an arbitrary number of Datanodes, all of 

which are configured to communicate with the single 

Namenode. Namenodes are responsible for storing the entire 

namespace and filesystem layout. This basically consists of 

table of the following tuples:  

filename_0 -->BlockID_A, BlockID_B, ...BlockID_X, etc. 

filename_1 -->BlockID_AA, BlockID_BB, ... BlockID_XX, 

etc. etc.  

A filename is a string, and the BlockIDs are just unique 

identifiers. Each filename can have an arbitrary number of 
blocks associated with it, growing with the file length. This is  

the only Namenode data structure that needs to be written to 

disk. All others are reconstructed at runtime. The Namenode 

is a critical failure point, but it shouldn't be an issue for load-

management. It needs to do very little actual work, mainly 
serving to guide the large team of Datanodes.  Datanodes are 

responsible for actually storing data. A datastore consists of a 

table of the following tuples:  

BlockID_X --> [array of bytes, no longer than 

BLOCK_SIZE] BlockID_Y --> [array of bytes, no longer 
than BLOCK_SIZE] etc. 

This is the only structure that the Datanode needs to keep on 

disk. It can reconstruct everything else at runtime. A given 

block can, and should, have copies stored on multiple 

Datanodes. A given Datanode has at most one copy of a given  
Block, and will often have no copies. It should be clear how a 

single Namenode table and a set of partly - overlapping 

Datanode tables are enough to reconstruct an entire 

filesystem. Upon startup, all Datanodes contact the central 

Namenode. They upload to the Namenode the blocks they 
have on the local disk. The Namenode thus builds a picture of 

where to find each copy of every block in the system. This 

picture will always be a little bit out of date, as Datanodes 

might become unavailable at any time.  

Datanodes also send periodic heartbeat messages to the 
Namenode. If these messages disappear, the Namenode 

knows the Datanode has become unavailable. The system can 

now field client requests. Imagine that a client wants to read 

file "foo.txt". It first contacts the Namenode over the network; 

the Namenode responds with two arrays:  
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The list of Blocks that make up the file "foo.txt"  

The set of Datanodes where each Block can be found  

The client examines the first Block in the list, and sees that it 
is available on a single Datanode. Fine. The client contacts 

that Datanode, and provides the BlockID. The datanode 

transmits the entire block. The client has now successfully 

read the first BLOCK_SIZE bytes of the file "foo.txt". (We 

imagine BLOCK_SIZE will be around 32MB.) So it is now 
ready to read the second Block. It finds that the Namenode 

claims two Datanodes hold this Block. The client picks one at 

random and contacts it.  

Imagine that right before the client contacts that Datanode, the 

Datanode's network card dies. The client can't get through, so 
it contacts the second Datanode provided by the Namenode. 

This time, the network connection works just fine. The client 

provides the ID for the second Block, and receives up to 

BLOCK_SIZE bytes in response. This process can be 

repeated until the client reads all blocks in the file.  

7. SCALABILITY 
Nutch hasn't scaled beyond 100 million pages so far, for both 

economic and technical reasons.  Maintaining an up -to-date 
copy of the entire Web is inherently an expensive proposition, 

costing substantial amounts of bandwidth. (Perhaps 10 

terabytes per month at minimum, which is about 30 megabits 

per second, which costs thousands of dollars per month) 

Answering queries from the general public is also inherently 
an expensive proposition, requiring large amounts of 

computer equipment to house terabytes of RAM and large 

amounts of electricity to power it, as well as one to three 

orders of magnitude more bandwidth. 

Nutch's link analysis stage requires the entire link database to 
be available on each machine participating in the calculation 

and includes a significant non-parallel final collation step. 

As Nutch partitions its posting lists, across cluster nodes by 

document, each query must be propagated to all of the 

hundreds or thousands of machines serving a whole-web 
index. This means that hardware failures will happen every 

few hours, the likelihood of a single slow response causing a 

query to wait several seconds for a retransmission is high, and 

the CPU resources required to process any individual query 

become significant. 

As Nutch crawls retrieve unpredictable amounts of data, load-

balancing crawls with limited disk resources are difficult.  

Much of Nutch's distribution across clusters must be done 

manually or by home-grown cluster management machinery; 

in particular, the distribution of data files for crawling and 
link analysis, and the maintenance of search-servers.txt files  

all must be done by hand.  Large deployments will require 

fault-tolerant automation of these functions. 

Further work is being done in this area to enhance Nutch's 

scalability. The Nutch Distributed File System (NDFS) is in 
current development versions of Nutch, to enhance 

performance along the lines proposed by the Google File 

System.  NDFS has been used recently to run a link analysis 

stage over 35 million pages on twelve machines.  

8. PLUGIN BASED ARCHITECTURE: 

The open source nature of Nutch makes it ideal for 

modification. This potential for customization is further aided 

by the modular nature of Nutch. The Nutch search engine is  
built upon a basic code backbone which is  augmented heavily 

through the use of plugins. Plugins are program extensions 

which are be added to a host application. The release version 

of Nutch contains dozens of plugins which may be added or 
removed as desired by changing the Nutch configuration. 

These plugins are responsible for the parsing of different file 

types during the crawl, indexing of crawl results, protocols 

through which the crawl can operate, and querying of indexed 

crawl results, among other tasks. Essentially, the majority of 
the primary search engine functions are performed by plugins. 

Therefore, modifying the search engine may be accomplished 

by changing the configuration of the plugins, which may 

include adding new plugins. In order to add WordNet-related 

functionality to Nutch, a plugin should be created.  

9. CONCLUSION: 
 The MapReduce programming model has been successfully 

used at Google for many different purposes. First, MapReduce 
is a software framework that allows developers to write 

programs that process massive amounts of unstructured data 

in parallel across a distributed cluster of processors or stand-

alone computers.  MapReduce provides a programming model 

that abstracts the problem from disk reads and writes 
transforming it into a computation over sets of keys and 

values. Nutch is the popular open source implementation of 

MapReduce, a powerful tool designed for deep analysis and 

transformation of very large data sets.   

Second, Filesystems that manage the storage across a network 
of machines are called distributed filesystems. NDFS, the 

Nutch Distributed File System, is a distributed file system 

designed to hold very large amounts of data (terabytes or even 

petabytes), and provide high-throughput access to these 

information.  

Finally, Nutch provides an API to MapReduce that allows to 

map and reduce functions in languages other than Java.  The 

Nutch open source search engine is built upon a basic code 

backbone which is augmented heavily through the use of 

plugins.  Plugins are program extensions which are be added 
to a host application.  These plugins are responsible for the 

parsing of different file types during the crawl, indexing of 

crawl results, protocols through which the crawl can operate, 

and querying of indexed crawl results, among other tasks. 
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