
International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

6

Implementation of MapReduce Algorithm and Nutch

Distributed File System in Nutch

Kowsalya N
Lecturer in Computer Science

Dr. C. Chandrasekar

M.C.A., Ph.D.
Department of Computer Science, Associate

Professor,Periyar University, Salem.

ABSTRACT
This paper provides an in-depth description of MapReduce

algorithm and Nutch Distributed File System in Nutch web
search engine. Nutch is an open-source Web search engine

that can be used at global, local, and even personal scale. To

engineer a search engine is a challenging task. Search engines

index tens to hundreds of millions of web pages involving a

comparable number of distinct terms. They answer tens of
millions of queries every day. Despite the importance of

large-scale search engines on the web, very little academic

research has been done on them. Furthermore, due to rapid

advance in technology and web proliferation, creating a web

search engine today is very different from ten years ago.

1. INTRODUCTION
The web creates new challenges for information retrieval. The
amount of information on the web is growing rapidly, as well

as the number of new users inexperienced in the art of web

research. People are likely to surf the web using search

engines. Automated search engines that rely on keyword

matching usually return too many low quality matches.
MapReduce is a software framework that allows developers to

write programs that process massive amounts of unstructured

data in parallel across a distributed cluster of processors or

stand-alone computers. It was developed at Google for

indexing Web pages and replaced their original indexing
algorithms and heuristics in 2004. The Distributed Nutch File

System, a set of software for storing very large stream-

oriented files over a set of commodity computers.

2. NEED FOR LARGE DATA

PROCESSING
We live in the data age. It’s not easy to measure the total

volume of data stored electronically. The problem is that

while the storage capacities of hard drives have increased

massively over the years, access speeds—the rate at which
data can be read from drives have not kept up. One typical

drive from 1990 could store 1370 MB of data and had a

transfer speed of 4.4 MB/s,§ so we could read all the data

from a full drive in around five minutes. Almost 20 years later

one terabyte drives are the norm, but the transfer speed is
around 100 MB/s, so it takes more than two and a half hours

to read all the data off the disk. This is a long time to read all

data on a single drive—and writing is even slower. The

obvious way to reduce the time is to read from multiple disks

at once. Imagine if we had 100 drives, each holding one
hundredth of the data. Working in parallel, we could read the

data in

less than two minutes. This shows the significance of

distributed computing.

3. CHALLENGES IN DISTRIBUTED

COMPUTING – MEETING NUTCH
Various challenges are faced while developing a distributed

application. The first problem to solve is hardware failure: as

soon as we start using many pieces of hardware, the chance

that one will fail is fairly high. A common way of avoiding
data loss is through replication: redundant copies of the data

are kept by the system so that in the event of failure, there is

another copy available. This is how RAID works, for instance,

although Nutchfilesystem, the Nutch Distributed

Filesystem(NDFS), takes a slightly different approach.

The second problem is that most analysis tasks need to be able

to combine the data in some way; data read from one disk

may need to be combined with the data from any of the other

99 disks. Various distributed systems allow data to be

combined from multiple sources, but doing this correctly is
notoriously challenging. MapReduce provides a programming

model that abstracts the problem from disk reads and writes

transforming it into a computation over sets of keys and

values.

This, in a nutshell, is what Nutch provides: a reliable shared
storage and analysis system. The storage is provided by

NDFS, and analysis by MapReduce. There are other parts to

Nutch, but these capabilities are its kernel.

Nutch is the popular open source implementation of
MapReduce, a powerful tool designed for deep analysis and

transformation of very large data sets. Nutch enables you to

explore complex data, using custom analyses tailored to your

information and questions. Nutch has its own filesystem

which replicates data to multiple nodes to ensure if one node
holding data goes down, there are at least 2 other nodes from

which to retrieve that piece of information. This protects the

data availability from node failure, something which is critical

when there are many nodes in a cluster (aka RAID at a server

level).

4. ORIGIN OF NUTCH
Nutch was created by Doug Cutting, the creator of Apache

Lucene, the widely used text search library. Nutch an open
source web search engine, itself a part of the Lucene project.

Building a web search engine from scratch was an ambitious

goal, for not only is the software required to crawl and index

websites complex to write, but it is also a challenge to run

without a dedicated operations team, since there are so many
moving parts. Nutch was started in 2002, and a working

crawler and search system quickly emerged. However, they

realized that their architecture wouldn’t scale to the billions of

pages on the Web. Help was at hand with the publication of a

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

7

paper in 2003 that described the architecture of Google’s

distributed filesystem, called GFS, which was being used in

production at Google.# GFS, or something like it, would solve
their storage needs for the very large files generated as a part

of the web crawl and indexing process. In particular, GFS

would free up time being spent on administrative tasks such as

managing storage nodes. In 2004, they set about writing an

open source implementation, the Nutch Distributed
Filesystem (NDFS). In 2004, Google published the paper that

introduced MapReduce to the world. Early in 2005, the Nutch

developers had a working MapReduce implementation in

Nutch, and by the middle of that year all the major Nutch

algorithms had been ported to run using MapReduce and
NDFS. NDFS and the MapReduce implementation in Nutch

were applicable beyond the realm of search.

5 . IMPLEMENTATION OF

MAPREDUCE
The framework is divided into two parts:

Map, a function that parcels out work to different nodes in the
distributed cluster.

Reduce, another function that collates the work and resolves

the results into a single value.

MapReduce is a programming model and an associated

implementation for processing and generating largedata sets.
Users specify a map function that processes a key/value pair

to generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with

the same intermediate key. Many real world tasks are

expressible in this model.

These abstractions are inspired by the map and reduce

primitives present in Lisp and many other functional

languages. We realized that most of our computations

involved applying a map operation to each logical .record. In

our input in order to compute a set of intermediate key /value
pairs, and then applying a reduce operation to all the values

that shared the same key, in order to combine the derived data

appropriately. Our use of a functional model with user

specialized map and reduce operations allows us to parallelize

large computations easily and to use re-execution as the
primary mechanism for fault tolerance.

5.1 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of the

MapReduce library expresses the computation as two

functions: Map and Reduce. Map, written by the user, takes

an input pair and produces a set of intermediate key/value

pairs. The MapReduce library groups together all intermediate
values associated with the same intermediate key I and passes

them to the Reduce function. The Reduce function, also

written by the user, accepts an intermediate key I and a set of

values for that key. It merges together these values to form a

possibly smaller set of values. Typically just zero or one
output value is produced per Reduce invocation. The

intermediate values are supplied to the user's reduce function

via an iterator. This allows us to handle lists of values that are

too large to fit in memory.

5.1.1 Map
map (in_key, in_value) -> (out_key, intermediate_value) list

Example: Upper-case Mapper

let map(k, v) = emit(k.toUpper(), v.toUpper())

(“foo”, “bar”) --> (“FOO”, “BAR”)

(“Foo”, “other”) -->(“FOO”, “OTHER”)

(“key2”, “data”) --> (“KEY2”, “DATA”)

5.1.2 Reduce

reduce (out_key, intermediate_value list) ->out_value list

Example: Sum Reducer

let reduce(k, vals)

sum = 0

for each int v in vals:

sum += v

emit(k, sum)

(“A”, [42, 100, 312]) --> (“A”, 454)

(“B”, [12, 6, -2]) --> (“B”, 16)

Example2:-

Counting the number of occurrences of each word in a large

collection of documents. The user would write code similar to

the following pseudo-code:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

8

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated count of

occurrences (just `1' in this simple example). The reduce

function sums together all counts emitted for a particular

word.

In addition, the user writes code to fill in a mapreduce

specification object with the names of the input and output

files, and optional tuning parameters. The user then invokes

the MapReduce function, passing it the specification object.

The user's code is linked together with the MapReduce library
(implemented in C++)

Programs written in this functional style are automatically

parallelized and executed on a large cluster of commodity

machines. The run-time system takes care of the details of

partitioning the input data, scheduling the program's execution
across a set of machines, handling machine failures,

and managing the required inter-machine communication.

This allows programmers without any experience with

parallel and distributed systems to easily utilize the resources

of a large distributed system.

The issues of how to parallelize the computat ion, distribute

the data, and handle failures conspire to obscure the original

simple computation with large amounts of complex code to
deal with these issues. As a reaction to this complexity,

Google designed a new abstraction that allows us to express

the simple computations we were trying to perform but hides

the messy details of parallelization, fault-tolerance, data

distribution and load balancing in a library.

5.2 Types

Even though the previous pseudo-code is written in terms of

string inputs and outputs, conceptually the map and reduce
functions supplied by the user have associated

types:

map (k1,v1) ! list(k2,v2)

reduce (k2,list(v2)) ! list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore, the

intermediate keys and values are from the same domain as the

output keys and values. Our C++ implementation passes

strings to and from the user-de_ned functions and leaves it to

the user code to convert between strings and appropriate
types.

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

9

Inverted Index: The map function parses each document, and

emits a sequence of hword; document IDi pairs. The reduce

function accepts all pairs for a given word, sorts the
corresponding document IDs and emits a hword;

list(document ID)i pair. The set of all output pairs forms a

simple inverted index. It is easy to augment this computation

to keep track of word positions.

Distributed Sort: The map function extracts the key from each
record, and emits a hkey; recordi pair. The reduce function

emits all pairs unchanged.

5.3 NutchMapReduce
Nutch Map-Reduce is a software framework for easily writing

applications which process vast amounts of data (multi-

terabyte data-sets) in-parallel on large clusters (thousands of

nodes) of commodity hardware in a reliable, fault -tolerant

manner.

 A Map-Reduce job usually splits the input data-set into

independent chunks which are processed by the map tasks in a

completely parallel manner. The framework sorts the outputs

of the maps, which are then input to the reduce tasks.

Typically both the input and the output of the job are stored in

a file-system. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the
same, that is, the Map-Reduce framework and the Distributed

FileSystem are running on the same set of nodes. This

configuration allows the framework to effectively schedule

tasks on the nodes where data is already present , resulting in

very high aggregate bandwidth across the cluster.

 A MapReduce job is a unit of work that the client wants to be

performed: it consists of the input data, the MapReduce

program, and configuration information. Nutch runs the job

by dividing it into tasks, of which there are two types: map

tasks and reduce tasks. There are two types of nodes that
control the job execution process: a jobtracker and a number

of tasktrackers. The jobtracker coordinates all the jobs run on

the system by scheduling tasks to run on tasktrackers.

Tasktrackers run tasks and send progress reports to the

jobtracker, which keeps a record of the overall progress of
each job. If a tasks fails, the jobtracker can reschedule it on a

different tasktracker. Nutch divides the input to a MapReduce

job into fixed-size pieces called input splits, or just splits.

Nutch creates one map task for each split, which runs the

userdefined map function for each record in the split.

Having many splits means the time taken to process each split

is small compared to the time to process the whole input. So if

we are processing the splits in parallel, the processing is better
load-balanced if the splits are small, since a faster machine

will be able to process proportionally more splits over the

course of the job than a slower machine. Even if the machines

are identical, failed processes or other jobs running
concurrently make load balancing desirable, and the quality of

the load balancing increases as the splits become more fine-

grained. On the other hand, if splits are too small, then the

overhead of managing the splits and of map task creation

begins to dominate the total job execution time. For most jobs,
a good split size tends to be the size of a NDFS block, 64 MB

by default, although this can be changed for the cluster (for all

newly created files), or specified when each file is created.

Nutch does its best to run the map task on a node where the

input data resides in NDFS. This is called the data locality
optimization. It should now be clear why the optimal split size

is the same as the block size: it is the largest size of input that

can be guaranteed to be stored on a single node. If the split

spanned two blocks, it would be unlikely that any NDFS node

stored both blocks, so some of the split would have to be
transferred across the network to the node running the map

task, which is clearly less efficient than running the whole

map task using local data. Map tasks write their output to

local disk, not to NDFS. Map output is intermediate output:

it’s processed by reduce tasks to produce the final output, and

once the job is complete the map output can be thrown away.
So storing it in NDFS, with replication, would be overkill. If

the node running the map task fails before the map output has

been consumed by the reduce task, then Nutch will

automatically rerun the map task on another node to recreate
the map output. Reduce tasks don’t have the advantage of data

locality—the input to a single reduce task is normally the

output from all mappers. In the present example, we have a

single reduce task that is fed by all of the map tasks.

Therefore the sorted map outputs have to be transferred across
the network to the node where the reduce task is running,

where they are merged and then passed to the user-defined

reduce function. The output of the reduce is normally stored

in NDFS for

reliability. For each NDFS block of the reduce output, the first
replica is stored on the local node, with other replicas being

stored on off-rack nodes. Thus, writing the reduce output does

consume network bandwidth, but only as much as a normal

NDFS write pipeline consume. The dotted boxes in the figure

below indicate nodes, the light arrows show data transfers on
a node, and the heavy arrows show data transfers between

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

10

nodes. The number of reduce tasks is not governed by the size

of the input, but is specified independently.

When there are multiple reducers, the map tasks partition their
output, each creating one partition for each reduce task. There

can be many keys (and their associated values) in each

partition, but the records for every key are all in a single

partition. The partitioning can be controlled by a user-defined

partitioning function, but normally the default partitioner—
which buckets keys using a hash function—works very well.

This diagram makes it clear why the data flow between map

and reduce tasks is colloquially known as “the shuffle,” as

each reduce task is fed by many map tasks. The shuffle is

more complicated than this diagram suggests, and tuning it
can have a big impact on job execution time. Finally, it’s also

possible to have zero reduce tasks. This can be appropriate

when you don’t need the shuffle since the processing can be

carried out entirely in parallel.

5.4 Combiner Functions
Many MapReduce jobs are limited by the bandwidth available

on the cluster, so it pays to minimize the data transferred

between map and reduce tasks. Nutch allows the user to
specify a combiner function to be run on the map output—the

combiner function’s output forms the input to the reduce

function. Since the combiner function is an optimization,

Nutch does not provide a guarantee of how many times it will

call it for a particular map output record, if at all. In other
words, calling the combiner function zero, one, or many times

should produce the same output from the reducer.

5.5 Nutch Streaming
Nutch provides an API to MapReduce that allows you to write

your map and reduce functions in languages other than Java.

Nutch Streaming uses Unix standard streams as the interface

between Nutch and your program, so you can use any

language that can read standard input and write to standard
output to write your M apReduce program. Streaming is

naturally suited for text processing (although as of version

0.21.0 it can handle binary streams, too), and when used in

text mode, it has a line-oriented view of data. Map input data

is passed over standard input to your map function, which
processes it line by line and writes lines to standard output. A

map output key-value pair is written as a single tab-delimited

line. Input to the reduce function is in the same format—a tab-

separated key-value pair—passed over standard input. The

reduce function reads lines from standard input, which the
framework guarantees are sorted by key, and writes its results

to standard output.

6. NUTCH DISTRIBUTED FILE

SYSTEM(NDFS)
Filesystems that manage the storage across a network of

machines are called distributed filesystems. Since they are
network-based, all the complications of network programming

kick in, thus making distributed filesystems more complex

than regular disk filesystems. For example, one of the biggest

challenges is making the filesystem tolerate node failure

without suffering data loss. Nutch comes with a distributed
filesystem called NDFS, which stands for Nutch Distributed

Filesystem.

NDFS, the Nutch Distributed File System, is a distributed file

system designed to hold very large amounts of data (terabytes

or even petabytes), and provide high-throughput access to this
information. Files are stored in a redundant fashion across

multiple machines to ensure their durability to failure and

high availability to very parallel applications.

6.1 NDFS Filesystem Semantics
Files can only be written once. After the first write, they

become read-only. (Although they can be deleted.)

Files are stream-oriented; you can only append bytes, and you

can only read/seek forward.

There are no user permissions or quotas, although these could
be added fairly easily.

So, all access to the NDFS system is through approved client

code. There is no plan to create an OS-level library to allow

any program to access the system. Nutch is the model user,

although there are probably many applications that could take
advantage of NDFS. (Pretty much anything that has very large

stream-oriented files would find it useful, such as data mining,

text mining, or media-oriented applications.)

6.2 System Design
There are two types of machines in the NDFS system:

1) Namenodes, which manage the file namespace

2) Datanodes, which actually store blocks of data

The NDFS namespace has a single Namenode which defines
it. There can be an arbitrary number of Datanodes, all of

which are configured to communicate with the single

Namenode. Namenodes are responsible for storing the entire

namespace and filesystem layout. This basically consists of

table of the following tuples:

filename_0 -->BlockID_A, BlockID_B, ...BlockID_X, etc.

filename_1 -->BlockID_AA, BlockID_BB, ... BlockID_XX,

etc. etc.

A filename is a string, and the BlockIDs are just unique

identifiers. Each filename can have an arbitrary number of
blocks associated with it, growing with the file length. This is

the only Namenode data structure that needs to be written to

disk. All others are reconstructed at runtime. The Namenode

is a critical failure point, but it shouldn't be an issue for load-

management. It needs to do very little actual work, mainly
serving to guide the large team of Datanodes. Datanodes are

responsible for actually storing data. A datastore consists of a

table of the following tuples:

BlockID_X --> [array of bytes, no longer than

BLOCK_SIZE] BlockID_Y --> [array of bytes, no longer
than BLOCK_SIZE] etc.

This is the only structure that the Datanode needs to keep on

disk. It can reconstruct everything else at runtime. A given

block can, and should, have copies stored on multiple

Datanodes. A given Datanode has at most one copy of a given
Block, and will often have no copies. It should be clear how a

single Namenode table and a set of partly - overlapping

Datanode tables are enough to reconstruct an entire

filesystem. Upon startup, all Datanodes contact the central

Namenode. They upload to the Namenode the blocks they
have on the local disk. The Namenode thus builds a picture of

where to find each copy of every block in the system. This

picture will always be a little bit out of date, as Datanodes

might become unavailable at any time.

Datanodes also send periodic heartbeat messages to the
Namenode. If these messages disappear, the Namenode

knows the Datanode has become unavailable. The system can

now field client requests. Imagine that a client wants to read

file "foo.txt". It first contacts the Namenode over the network;

the Namenode responds with two arrays:

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

11

The list of Blocks that make up the file "foo.txt"

The set of Datanodes where each Block can be found

The client examines the first Block in the list, and sees that it
is available on a single Datanode. Fine. The client contacts

that Datanode, and provides the BlockID. The datanode

transmits the entire block. The client has now successfully

read the first BLOCK_SIZE bytes of the file "foo.txt". (We

imagine BLOCK_SIZE will be around 32MB.) So it is now
ready to read the second Block. It finds that the Namenode

claims two Datanodes hold this Block. The client picks one at

random and contacts it.

Imagine that right before the client contacts that Datanode, the

Datanode's network card dies. The client can't get through, so
it contacts the second Datanode provided by the Namenode.

This time, the network connection works just fine. The client

provides the ID for the second Block, and receives up to

BLOCK_SIZE bytes in response. This process can be

repeated until the client reads all blocks in the file.

7. SCALABILITY
Nutch hasn't scaled beyond 100 million pages so far, for both

economic and technical reasons. Maintaining an up -to-date
copy of the entire Web is inherently an expensive proposition,

costing substantial amounts of bandwidth. (Perhaps 10

terabytes per month at minimum, which is about 30 megabits

per second, which costs thousands of dollars per month)

Answering queries from the general public is also inherently
an expensive proposition, requiring large amounts of

computer equipment to house terabytes of RAM and large

amounts of electricity to power it, as well as one to three

orders of magnitude more bandwidth.

Nutch's link analysis stage requires the entire link database to
be available on each machine participating in the calculation

and includes a significant non-parallel final collation step.

As Nutch partitions its posting lists, across cluster nodes by

document, each query must be propagated to all of the

hundreds or thousands of machines serving a whole-web
index. This means that hardware failures will happen every

few hours, the likelihood of a single slow response causing a

query to wait several seconds for a retransmission is high, and

the CPU resources required to process any individual query

become significant.

As Nutch crawls retrieve unpredictable amounts of data, load-

balancing crawls with limited disk resources are difficult.

Much of Nutch's distribution across clusters must be done

manually or by home-grown cluster management machinery;

in particular, the distribution of data files for crawling and
link analysis, and the maintenance of search-servers.txt files

all must be done by hand. Large deployments will require

fault-tolerant automation of these functions.

Further work is being done in this area to enhance Nutch's

scalability. The Nutch Distributed File System (NDFS) is in
current development versions of Nutch, to enhance

performance along the lines proposed by the Google File

System. NDFS has been used recently to run a link analysis

stage over 35 million pages on twelve machines.

8. PLUGIN BASED ARCHITECTURE:

The open source nature of Nutch makes it ideal for

modification. This potential for customization is further aided

by the modular nature of Nutch. The Nutch search engine is
built upon a basic code backbone which is augmented heavily

through the use of plugins. Plugins are program extensions

which are be added to a host application. The release version

of Nutch contains dozens of plugins which may be added or
removed as desired by changing the Nutch configuration.

These plugins are responsible for the parsing of different file

types during the crawl, indexing of crawl results, protocols

through which the crawl can operate, and querying of indexed

crawl results, among other tasks. Essentially, the majority of
the primary search engine functions are performed by plugins.

Therefore, modifying the search engine may be accomplished

by changing the configuration of the plugins, which may

include adding new plugins. In order to add WordNet-related

functionality to Nutch, a plugin should be created.

9. CONCLUSION:
 The MapReduce programming model has been successfully

used at Google for many different purposes. First, MapReduce
is a software framework that allows developers to write

programs that process massive amounts of unstructured data

in parallel across a distributed cluster of processors or stand-

alone computers. MapReduce provides a programming model

that abstracts the problem from disk reads and writes
transforming it into a computation over sets of keys and

values. Nutch is the popular open source implementation of

MapReduce, a powerful tool designed for deep analysis and

transformation of very large data sets.

Second, Filesystems that manage the storage across a network
of machines are called distributed filesystems. NDFS, the

Nutch Distributed File System, is a distributed file system

designed to hold very large amounts of data (terabytes or even

petabytes), and provide high-throughput access to these

information.

Finally, Nutch provides an API to MapReduce that allows to

map and reduce functions in languages other than Java. The

Nutch open source search engine is built upon a basic code

backbone which is augmented heavily through the use of

plugins. Plugins are program extensions which are be added
to a host application. These plugins are responsible for the

parsing of different file types during the crawl, indexing of

crawl results, protocols through which the crawl can operate,

and querying of indexed crawl results, among other tasks.

 10. REFERENCES:
[1] White, Tom. 2006. “Introduction to Nutch, Part 1:

Crawling”. Retrieved from

http://today.java.net/pub/a/today/2006/01/10/introduction
-to-nutch-1.html.

[2] Smart, John Ferguson. 2006. “Integrate Advanced Search

Functionalities Into Your Apps”. Retrieved from

http://www.javaworld.com/javaworld/jw-09-2006/jw-

0925-lucene.html .

[3] Open source at:

http://en.wikipedia.org/wiki/Open_Source

[4] Apache nutch at: http://lucene.apache.org/nutch/

[5] Nutch at: http://www.nutch.org/

[6] M. Cafarella and D. Cutting. Building Nutch: open
source search. 2004.

[7] MapReduce and Simplified Data Processing on large

Clusters, journal of Jeffrey Dean and Sanjay Ghemawat,

Google, Inc.

http://today.java.net/pub/a/today/2006/01/10/introduction-to-nutch-1.html
http://today.java.net/pub/a/today/2006/01/10/introduction-to-nutch-1.html
http://en.wikipedia.org/wiki/Open_Source
http://lucene.apache.org/nutch/
http://www.nutch.org/

