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ABSTRACT 

The real life problems deal with imperfectly specified 

knowledge and some degree of imprecision, uncertainty or 

inconsistency is embedded in the problem specification. The 

well-founded theory of fuzzy sets is a special way to model 

the uncertainty. The rules in a fuzzy model contain a set of 
propositions, each of which restricts a fuzzy variable to a 

single fuzzy value by means of the predicate equivalency. 

That way, each rule covers a single fuzzy region of the fuzzy 

grid. The proposed system of this thesis extends this structure 

to provide more general fuzzy rules, covering the input space 
as much as possible. In order to do this, new predicates are 

considered and a Max-Min Ant System is proposed to learn 

such fuzzy rules. 

Ant system is a general purpose algorithm inspired by the 

study of   behavior of ant colonies. It is based on cooperative 
search paradigm that is applicable to the solution of 

combinatorial optimization problem. In this thesis we consider 

the combinatorial optimization issue of travelling salesman 

problem (TSP) which evaluates more generic Fuzzy rules 

provided by Max-Min Ant System (MMAS). The existing ant 
colony system (ACS) was a distributed algorithm applied to 

the travelling salesman problem (TSP). In ACS, a set of 

cooperating agents called ants cooperate to find good 

solutions for TSPs (but here, Ants search their path 

randomly). Ants cooperate using an indirect form of 
communication mediated by pheromone they deposit on the 

edges of the TSP problem in symmetric instances. However 

most of the TSP issues carry both symmetric and asymmetric 

instances.  

1. INTRODUCTION 
The system has shown that Ant Colony System (ACS) is 

competitive with other nature-inspired algorithms on some 

relatively simple problems. On the other hand, in the past 
years a lot of work has been done to define ad-hoc heuristics, 

to solve the Travelling Salesman Problem (TSP). In general, 

these ad-hoc heuristics greatly outperform, on the specific 

problem of the TSP, general purpose algorithmic approaches 

like evolutionary computation and simulated annealing (SA). 
Heuristic approaches to the TSP can be classified as tour 

constructive heuristics and tour improvement heuristics.  

Tour constructive heuristics usually starts with selecting a 

random city from the set of cities and then incrementally 

builds a feasible TSP solution by adding new cities chosen 
according to some heuristic rule. For example, the nearest 

neighbor heuristic builds a tour by adding the closest node in 

term of distance from the last node inserted in the path. On the 

other hand, tour improvement heuristics start from a given 

tour and attempt to reduce its length by exchanging edges  
chosen according to some heuristic rule until a local optimum 

is found (i.e.,  until no further improvement is possible using 

the heuristic rule).  

The most used and well-known tour improvement heuristics 
are 2-optimization and 3-optimization, and Lin-Kernighan [9] 

in which respectively two, three, and a variable number of 

edges are exchanged. It has been experimentally shown that, 

in general, tour improvement heuristics produce better quality 

results than tour constructive heuristics. A general approach is 
to use tour constructive heuristics to generate a solution and 

then to apply a tour improvement heuristic to locally optimize 

it. It has been shown recently that it is more effective to 

alternate an improvement heuristic with updation of the last 

(or of the best) solution produced, rather than iteratively 
executing a tour improvement heuristic starting from solutions 

generated randomly or by a constructive heuristic.  

An example of successful application of the above alternate 

strategy is the work by Freisleben and Merz [7] in which a 

genetic algorithm is used to generate new solutions to be 
locally optimized by a tour improvement heuristic. ACS is a 

tour construction heuristic which, like genetic algorithm, each 

iteration produces a set of feasible solutions which are in 

some sense an updation of the previous best solution. It is 

therefore a reasonable guess that adding a tour improvement 
heuristic to ACS could make it competitive with the best 

algorithms. 

The system has therefore added a tour improvement heuristic 

to ACS. In order to maintain ACS ability to solve both TSP 

and Adaptive Travelling Salesman Problem (ATSP) problems 
the system have decided to base the local optimization 

heuristic on a restricted 3-optimizationprocedure that, while 

inserting/removing three edges on the path, considers only 3-

optimizationmoves that do not revert the order in which the 

cities are visited. The resulting algorithm is called ACS-3-
optimization. In this way the same procedure can be applied 

to symmetric and asymmetric TSPs, avoiding unpredictable 

tour length changes. In addition, when a candidate edge (r ,s) 

to be removed is selected, the restricted 3-

optimizationprocedure restricts the search for the other two 
edges to those nodes p belonging to edge (p,q) such as 

δ(r,q)<δ(r,s). This project proposes an ant colony optimization 

algorithm for tuning generalization of fuzzy rule. 

2. PROBLEM DOMAIN 

2.1 Travelling Salesman Problem 
The Travelling Salesman Problem (TSP) is a problem in 
combinatorial optimization studied in operations research and 

theoretical computer science. Given a list of cities and their 

pairwise distances, the task is to find a shortest possible tour 

that visits each city exactly once. The problem was first 

formulated as a mathematical problem in 1930 and is one of 
the most intensively studied problems in optimization. It is 

used as a benchmark for many optimization methods. Even 
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though the problem is computationally difficult, a large 

number of heuristics and exact methods are known, so that 

some instances with tens of thousands of cities can be 
solved.The TSP has several applications even in its purest 

formulation, such as planning, logistics, and the manufacture 

of microchips. Slightly modified, it appears as a sub-problem 

in many areas, such as genome sequencing. In these 

applications, the concept city represents, for example, 
customers, soldering points, or Deoxyribonucleic Acid (DNA) 

fragments, and the concept distance represents travelling 

times or cost, or a similarity measure between DNA 

fragments. In many applications, additional constraints such 

as limited resources or time windows make the problem 
considerably harder.  

In the theory of computational complexity, the decision 

version of TSP belongs to the class of Nondeterministic 
Polynomial (NP)-complete problems. Thus, it is assumed that 

there is no efficient algorithm for solving TSPs. In other 

words, it is likely that the worst case running time for any 

algorithm for TSP increases exponentially with the number of 

cities, so even some instances with only hundreds of cities  
will take many years to solve exactly. 

2.2 Ant Colony Optimization 
The ant colony optimization algorithm (ACO) is a 

probabilistic technique for solving computational problems 

which can be reduced to finding good paths through graphs. 

This algorithm is a member of ant colony algorithms family, 

in swarm intelligence methods, and it constitutes some 
metaheuristic optimizations. Initially proposed by Marco 

Dorigo in 1992 in his PhD thesis, the first algorithm was 

aiming to search for an optimal path in a graph; based on the 

behavior of ants seeking a path between their colony and a 
source of food. The original idea has since diversified to solve 

a wider class of Numerical problems, and as a result, several 

problems have emerged, drawing on various aspects of the 

behavior of ants. Ant Colony Optimization is a paradigm for  

designing meta heuristic algorithms for combinatorial 
optimization problems. The first algorithm which can be 

classified within this framework was presented in 1991 and, 

since then, many diverse variants of the basic principle have 

been reported in the literature. The essential trait of ACO 

algorithms is the combination of a priori information about 
the structure of a promising solution with a posteriori 

information about the structure of previously obtained good 

solutions. 

Ant colony optimization algorithms have been applied to 

many combinatorial optimization problems, ranging from 
quadratic assignment to fold protein or routing vehicles and a 

lot of derived methods have been adapted to dynamic 

problems in real variables, stochastic problems, multi-targets 

and parallel implementations. It has also been used to produce 

near-optimal solutions to the travelling salesman problem. 
They have an advantage over simulated annealing and genetic 

algorithm approaches of similar problems when the graph 

may change dynamically; the ant colony algorithm can be run 

continuously and adapt to changes in real time. This is of 

interest in network routing and urban transportation systems. 

Ant colony optimization algorithms have been used to 

produce near-optimal solutions to the travelling salesman 

problem. The first ACO algorithm was called the Ant system 

(AS) and it was aimed to solve the travelling salesman 

problem, in which the goal is to find the shortest round-trip to 
link a series of cities. The general algorithm is relatively 

simple and based on a set of ants, each making one of the 

possible round-trips along the cities. At each stage, the ant 

chooses to move from one city to another according to some 
rules: 

a. It must visit each city exactly once  

b. A distant city has less chance of being chosen (the 
visibility)  

c. The more intense the pheromone trail laid out on an 

edge between two cities, the greater the probability 

that that edge will be chosen  

d. Having completed its journey, the ant deposits more 
pheromones on all edges it traversed, if the journey 

is short  

e. After each iteration, trails of pheromones evaporate.  

f. 3. Max-Min Ant System 

The MAX–MIN Ant System (MMAS) algorithm achieves a 

strong exploitation of the search history by allowing only the 

best solutions to add pheromone during the pheromone trail 

update. Also, the use of a rather simple mechanism for 

limiting the strengths of the pheromone trails effectively 
avoids premature convergence of the search. Finally, MMAS 

can easily be extended by adding local search algorithms. In 

fact, the best performing ACO algorithms for many different 

combinatorial optimization problems improve the solutions 

generated by the ants with local search algorithms. As our 
empirical results show, MMAS is currently one of the best 

performing ACO algorithms for the TSP. One of the main 

ideas introduced by max–min Ant System, the utilization of 

pheromone trail limits to prevent premature convergence, can 
also be applied in a different way, which can be interpreted as 

a hybrid between MMAS and Ant Colony System (ACS). 

 

MAX–MIN Ant System, which has been specifically 

developed to meet these requirements, differs in three key 
aspects from Ant System (AS): 

 

a) To exploit the best solutions found during iteration or 

during the run of the algorithm, after each iteration only 

one single ant adds pheromone. This ant may be the one 
which found the best solution in the current iteration 

(iteration-best ant) or the one which found the best 

solution from the beginning of the trial (global-best ant). 

b) To avoid stagnation of the search the range of possible 

pheromone trails on each solution component is limited 
to an interval [min, max].  

c) Additionally, we deliberately initialize the pheromone 

trails to max, achieving in this way a higher exploration 

of solutions at the start of the algorithm.  

 

3.1 Fuzzy Rule 
Human beings  make decisions based on rules. Although, we 

may not be aware of it, all the decisions we make are all based 
on computer like if-then statements. If the weather is fine, 

then we may decide to go out. If the forecast says the weather 

will be bad today, but fine tomorrow, then we make a decision 

not to go today, and postpone it till tomorrow. Rules associate 

ideas and relate one event to another. Fuzzy machines, which 
always tend to mimic the behavior of man, work the same 

way. However, the decision and the means of choosing that 

decision are replaced by fuzzy sets and the rules are replaced 

by fuzzy rules. Fuzzy rules also operate using a series of if-

then statements. For instance, if X then A, if y then b, where 
A and B are all sets of X and Y. Fuzzy rules define fuzzy 

patches, which is the key idea in fuzzy logic.  
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Fuzzy logic is a powerful problem-solving methodology with 

a myriad of applications in embedded control and information 

processing. Fuzzy provides a remarkably simple way to draw 
definite conclusions from vague, ambiguous or imprecise 

information. In a sense, fuzzy logic resembles human decision 

making with its ability to work from approximate data and 

find precise solutions. 

A fuzzy rule is defined as a conditional statement in the form: 

IF x is A, THEN y is B  

Where x and y are linguistic variables; A and B are linguistic 

values determined by fuzzy sets on the universe of discourse 

X and Y, respectively. A fuzzy set is a class of objects with a 

continuum of grades of membership. Such a set is 
characterized by a membership (characteristic) function which 

assigns to each object a grade of membership ranging between 

zero and one. The notions of inclusion, union, intersection, 

complement, relation, convexity, etc., are extended to such 

sets, and various properties of these notions in the context of 
fuzzy sets are established. 

The proposed Max-Min Ant System is an improved version of 

basic ant system applied to both symmetric and asymmetric 

instances of the Travelling Salesman Problem. The improved 

Max-Min ant system is augmented with a local search 
procedure, and produce better efficiency compared to ACS. In 

MMAS, the ant search is regarded as a combination of 

consequent values selected from every rule. A pheromone 

matrix among all candidate consequent values is constructed. 

Searching for the best one among all combinations of rule 
consequent values is based mainly on the pheromone matrix. 

The obtained fuzzy rules of TSP from Max-Min ant system 

provide two benefits. They are lower number of rules and 

their accuracy, improves with the increase in generalization 

being introduced and which provides an optimum solution.  

4. MAX-MIN ANT FUZZY ON TSP – 

EXPERIMENTAL EVALUATION 
The task in the TSP is to find a tour of minimum length 

through a given set of cities. A TSP can be represented by a 

complete weighted directed graph G=(V,A,d) with the set of 

nodes (cities) V={1,2,…n}, the set of  paths A, (i,j)  V * V, 
and the weight function d: A  IN, associating a positive 

integer weight dij  with every path (i, j), interpretable as the 

distance between nodes i and j. The goal is to find a shortest 

cycle that visits each vertex in the graph exactly once. In the 
context of TSPs we will refer to such a cycle also as tour. In 

the symmetric TSP the distances between nodes are 

independent of the direction, i.e. for every pair of nodes holds  

dij = dji . In the more general asymmetric TSP atleast for one 

pair of node holds dij ≠ dji .  The TSP is a NP-hard 
optimization problem which has many applications. 

Among the algorithmic approaches for the solution of TSPs is  

elaborate Branch and CUT algorithms that are able to solve 

very large instances of hundreds up to few thousand cities to 

optimality. Despite of the success of complete op timization 
algorithms still much interest is put on local search heuristics 

for the approximate solution of TSPs. Nowadays even more 

important is the fact that the TSP has become a standard test 

bed for algorithmic ideas. Apart from basic local search 

procedures, most metaheuristics algorithms are applied to 
TSP.  

New algorithmic approaches should therefore be tested on this 

standard problem and a good performance on TSPs is taken as  

an indicator of the promise a new approach holds. This is one 

of the main reasons why the system applies Max-Min ant 

system to this problem. Another reason is that Ant system has 

been proposed at hand of the application to TSP and so we 
can compare Max-Min Ant system directly to Ant system. 

Furthermore, the system investigates the behavior of Max-

Min Ant system and hope that some findings for the 

application to TSPs also carry over to other combinatorial 

optimization problems. The proposed scheme applied Max-
Min Ant system to symmetric and asymmetric TSP. For all 

the problems we used, the optimal solution value is known 

and the results are presented most often as excess over the 

known optimal solution. 

The performance of ant system can be enhanced by allowing 
only the best ant, update the trails in every cycle. Yet a 

disadvantage of this is the early stagnation of the search that 

makes further tour improvement impossible. When stagnation 

occurs, the trails on few paths grow so high that the ants will 

always construct the corresponding tour again and again. In 
MMAS the system only allow the best ant to update the trails. 

To alleviate the problem concerning early stagnation, the 

system introduces explicit maximum and minimum trial 

stagnation on the paths, hence the name MAX-MIN Ant 

System. The maximum and minimum trail limits are chosen in 
a problem dependent way depending on the average Path 

length .This way the influence of the trail intensities is  

limited.  

As the system use as lower limit Tmin , the  probability that a 

specific path is chosen may become very small, but will be 
still greater  then zero. The trail limits alleviate the problem 

associated with the early stagnation of search especially for 

long runs, that leading to a higher degree of exploration. The 

trail strength in MMAS is initialization to Tmax for all paths. 

After each iteration, evaporation will reduce the trail strength 
by a factor p. Only the trail on paths participating in the best 

tours is allowed to increased their intensities or maintain them 

at a high level. Thus the trail strength on bad paths decreases 

slowly and only good paths can maintain a high level of trail 

strength and will therefore is selected more often by the ants. 
The performance of MMAS improves considerably over Ant 

System.  

Despite of using maximum and minimum trail limits, long 

runs of the MMAS still can show stagnation behavior. If the 

mean 0.05-branching factor approaches very low values only 
few new tours are built, leading to very limited exploration of 

possible better. To avoid this, the system added the trail-

smoothing mechanism. In case of stagnation of the search as  

indicated by mean branching factor, the system adjust the trail 

intensities according to a portion ally update, the trail intensity 
in increased proportional to the different between Tmax and 

the current trail intensity Tij(t) on the path (I,j) 

Increase~ Tmax - Tij(t)  

 

As an advantage of the proportional update, the system does 
not completely forget the trails learned so far. Its overall 

effect is that by increasing the trail intensities, the probability 

distribution for the selection of the exploration of new tours is 

higher. The system call this approach smoothing of the trail as  

the differences between high and low trail intensities become 
less pronounced, i.e. smoothing. With the smoothing approach 

the solution quality for longer runs increased significantly.          
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MAX-MIN Ant System algorithm 

while time limit not reached do 

for a = 0 to m - 1 do 

      {construction process of ant a} 

     C0   

for e = 0 to |E| - 1 do 

   Choose place p randomly from set P!  places suitable for 

event e, according to probabilities probep for event e and 

place p 

            Ce  Ce-1  {ep} 

end for 

            C  solution after applying local search algorithm to 

C|E|-1 

         Citeration best  best of Cand Citeration best 

end for 

Cglobal best   best of Citeration best and Cglobal best 

global best or local best pheromone update 

(according to ) for T using 

Cglobal best, Tmin, and Tmax 

end while 

    

Where 

|E|  a number of events in the set E (provided in 

the input file for each instance) 

p - a place from the set P; p  P 

e  an event from the set E; e  E, e < |E| 

T  the pheromone matrix 

C - Complete assignment of events into places, C: E 

 P 

Tmin  minimal pheromone level 

Tmax  maximal pheromone level 

 

The basic mode of operation of the MAX-MIN Ant System is 

as follows. At each iteration of the algorithm, each of the ants 
constructs a complete assignment C of events into paths. 

 

Following a pre-ordered list of events, the ants choose the 

path for the given event probabilistically, guided by 

stigmergic information. This information is in the form of a 
matrix of pheromone values.  TSP problem specific 

knowledge (Fuzzy rule information) is also used by the 

algorithm. The path for an event is  chosen only from the ones  

that are suitable for the given event, placing the event that will 

not violate any hard constraint. If, at some point of time 
during the construction of the assignment, there is no such a 

place available, a list of paths are extended by one, and the 

event is placed in one of the paths of this additional paths. 

This of course results in an infeasible solution as number of 

timeslots used from now on exceeds route number. This also 
means that pheromone matrix has to be extended as well.  

 

Once all the ants have constructed their assignment of events 

into paths, a local search routine is used to further improve the 

solutions. Finally the best solution of all iteration is compared 
to the global best solution found so far. Only the better of the 

two is kept as the new global best. If the differences between 

extreme pheromone values were too large, all ants would 

almost always generate the same solutions, which would 

mean algorithm stagnation. The MAX-MIN Ant System 
introduces upper and lower limits on the pheromone values  

max and min respectively that prevent this. The maximal 

difference between the extreme levels of pheromone may be 

controlled, and thus the search intensification versus 

diversification may be balanced. The pheromone table T is  
updated either by the best assignment of a given iteration (i.e. 

local best), or by the global best assignment. We 

probabilistically choose which one to use. The local best 

update is chosen with probability proportional to its quality 

compared to the quality of the global best solution, and also 
the exploration rate. 

 

5. TSP MAX_MIN ANT FUZZY 

PERFORMANCE EVALUATION 
The proposed MMAS algorithm was applied to the 

identification of the analytical function using equally 
distributed fuzzy partitions with triangular membership 

functions for all input and output fuzzy domains and with five 

sets each of the TSP. The experiment consisted on the 

identification of the system with randomly generated training 

sets with three different sizes (10, 20 and 50 examples), and 
the subsequent run of the proposed MMAS algorithm over the 

identified fuzzy model. In this respect, the original Ant 

System version was implemented, which applies a random 

proportional rule for selecting each step and whose 

pheromone deposit mechanism is run once the solution is  

completed. 

Two measures were used in order to analyze both the 

generality and accuracy results of the method. On the one 

hand, the number of rules describing the model together with 

the averaged complexity of the premises was considered for 

evaluating its generality. On the other hand, the normalized 
mean square error between the model and the system output 

was obtained for accuracy evaluation. The experiment was 

run 10 times for each training set size and the average results 

were obtained. It can be observed that the generalization 

capability of the MMAS algorithm is better than the one 
provided by the Ant Colony Optimization system. It shows 

the average generality of the fuzzy models expressed as the 

average number of rules describing them and, the average 

complexity of the premises in the rules.  

(Resource Labels: a=alu, fm=faster multiplier, m=multiplier,  

i=input, o=output) 

(Heuristic Labels: IM=Instruction Mobility ID=Instruction 

Depth, LWID=Latency Weighted Instruction Depth, 

SN=Successor Number) 

Again, the MMAS algorithm provides fuzzy models described 
with a lower number of rules when compared with the initial 

fuzzy models and these rules had also have a low complexity. 

In addition, practically no case needed the maximum number 

of cycles, NCmax, to obtain the best solution and, in average; 

about 8 cycles were enough which proves the solidarity of the 
MMAS system compared to the Ant colony optimization 

system. Table 1 summarizes the experiment results. 
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Compared with the variety of list scheduling and the force-

directed scheduling method, the MMAS algorithm generates 

better results consistently over all testing cases. For some of 
the testing samples, it provides significant improvement on 

the schedule latency. The biggest saving achieved is 23%. 

This is obtained when LWID is used as the local heuristic for 

our algorithm and also as the heuristic for constructing the 

priority list for the traditional list scheduler. 

Though the results of force-directed scheduler are generally 

superior to that of the list scheduler, our algorithm achieves  
even better results. On average, comparing with the force-

directed approach, our algorithm provides a 6.2% 

performance enhancement for the testing cases, while 

performance improvement for individual test sample can be as  

much as  14.7%. Finally, compared with the optimal 
scheduling results computed by using the integer linear 

programming model, the results generated by the proposed 

algorithm are much closer to the optimal than those provided 

by the list scheduling heuristics and the force directed 

approach. The MMAS algorithm improves the average 
schedule latency by 44% comparing with the list scheduling 

heuristics.  

The performance of traditional list scheduler heavily depends 

on the input. This is echoed by the data in Table 1. Meantime, 

it is easy to observe that the proposed algorithm is much less 

sensitive to the choice of different local heuristics and input 
applications. This is evidenced by the fact that the standard 

deviation of the results achieved by the new algorithm is  

much smaller than that of the traditional list scheduler. Based 

on the data shown in Table 1, the average standard deviation 

for list scheduler over all and different heuristic choices is  
0.8128, while that for the MMAS algorithm is only 0.1673. In 

other words, user can expect to achieve much more stable 

scheduling results on different application regardless the 

choice of local heuristic. This is a great attribute desired in 

practice. 

6. CONCLUSION 
In this work, MMAS algorithm has been proposed to increase 

the generality of the fuzzy rules by searching for its structure 

to be maximal. With this aim, the method searches good 

descriptions by means of compound rules of fuzzy models 
initially expressed with conventional single rules. The 

construction graph allows representing each solution as a 

sequential addition of labels to the premises in the antecedent, 

and from the cooperative behavior of the ants good 

combinations of compound rules emerge.  

The proposal have shown that MMAS is an interesting novel 
approach to parallel stochastic optimization of the TSP. 

MMAS has been shown to compare favorably with previous 

attempts to apply other heuristic algorithms like genetic 

algorithms, evolutionary programming, and simulated 

annealing. Nevertheless, competition on the TSP is very 
tough, and a combination of a constructive method which 

generates good starting solution with local search which takes  

these solutions to a local optimum seems to be the best 

strategy. The system has shown that MMAS is also a very 

good constructive heuristic to provide such starting solutions 

for local optimizers. 

The MMAS model presents an exponential pheromone 
deposition approach to improve the performance of classical 

ant system algorithm which employs uniform deposition rule. 

A simplified analysis using differential equations is carried 

out to study the stability of basic ant system dynamics with 

both exponential and constant deposition rules. A roadmap of 

connected cities, where the shortest path between two 
specified cities are to be found out, is taken as a platform to 

compare max-min ant system model (an improved and 

popular model of ant system algorithm) with exponential and 

constant deposition rules. Extensive simulations are 

performed to find the best parameter settings for non-uniform 
deposition approach and experiments with these parameter 

settings revealed that the above approach outstripped the 

traditional one by a large extent in terms of both solution 

quality and convergence time.  
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