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ABSTRACT 
Relational database management systems manages the tables  
with predefined indexes. In RDBMS indexes are created on 

the basis of attribute values. The Imine indexing scheme is  

used to index item sets in relational databases. The index 

creation is performed with out any constraints. IMine provides 

a complete representation of the original database. The Imine 
indexing scheme reduces the input/output cost for item set 

extraction and management process. The Imine index method 

supports different item set extraction algorithms.  Different 

rule mining algorithms are supported by Imine index scheme. 

At present the Imine index scheme is developed under 
PostgreSQL DBMS.  

The item set extraction and indexing operations are integrated 

in the system. The IMine scheme is improved to handle 

incremental data. In the incremental data handling mechanism 

the item sets and indexes are updated with respect 
transactional database changes. The data add, modify and 

remove operations are supported by the proposed index 

method. Reindexing process is optimized. Data structure is 

updated to handle all data distribution. The proposed item set 

extraction and indexing scheme is designed for the Oracle 
relational database. The system development is planned using 

J2EE environment.    

General and compact structure - Provide tight integration of 

item set extraction - Can be efficiently exploited by different 

item set extraction algorithm - In particular, FP-growth and 
LCM v.2 - Has been integrated into the PostgreSQL DBMS 
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1 INTRODUCTION 
Relational DBMSs exploit indices, which are ad hoc data 

structures, to enhance query performance and support the 

execution of complex queries. A similar approach is proposed 
to support data mining queries. The Imine index is a novel 

data structure that provides a compact and complete 

representation of transactional data supporting efficient item 

set extraction from a relational DBMS. It is characterized by 

the following properties: 
1. It is a covering index. No constraint is enforced during the 

index creation phase. Hence, the extraction can be performed 

by means of the index alone, without accessing the original 

database. The data representation is complete and allows 

reusing the index for mining item sets with any support 
threshold. 

2. The IMine index is a general structure which can be 

efficiently exploited by various item set extraction algorithms. 

These algorithms can be characterized by different in-memory 

data representations and techniques for visiting the search 

space. Data access functions have been devised for efficiently 

loading in memory the index data. Once in memory, data is 

available for item set extraction by means of the algorithm of 

choice. The IMine index is evaluated with FP-growth and 
LCM v.2. Furthermore, the IMine index also supports the 

enforcement of various constraint categories. 

3. The IMine physical organization supports efficient data 

access during item set extraction. Correlation analysis allows 

to discover data accessed together during pattern extraction. 
To minimize the number of physical data blocks read during 

the mining process, correlated information is stored in the 

same block. 

4. IMine supports item set extraction in large data sets. A 

direct writing technique is exploited to avoid representing in 
memory the entire large data set. Direct materialization has a 

limited impact on the final index size because it is applied 

only on a reduced portion of the data set. 

 

2 IMINE INDEX SCHEME 
The transactional data set D is represented, in the 

relational model, as a relationR. Each tuple inRis a pair 

(TransactionID, ItemID). The IMine index provides a 
compact and complete representation of R. Hence, it allows 

the efficient extraction of item sets from R, possibly enforcing 

support or other constraints. We present the general structure 

of the IMine index. The physical organization of the index is  

presented together with a discussion of access cost.  
 

 

2.1 IMine Index Structure 
The structure of the IMine index is characterized by two 
components: the Item set-Tree and the Item-Btree. The two 

components provide two levels of indexing. The Item set-Tree 

(I-Tree) is a prefix-tree which represents relation R by means 

of a succinct and lossless compact structure. The Item-Btree 

(I-Btree) is a B+Tree structure which allows reading selected 
I-Tree portions during the extraction task. For each item, it 

stores the physical locations of all item occurrences in the I-

Tree. Thus, it supports efficiently loading from the I-Tree the 

transactions in R including the item. In the following, we 

describe in more detail the I-Tree and the I-Btree structures. 

2.1.1 I-Tree 
An effective way to compactly store transactional records is to 

use a prefix-tree. Trees and prefix-trees have been frequently 
used in data mining and data warehousing indices, including 
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cube forest, FP-tree, H-tree, Inverted Matrix, and Patricia-

Tries. Our current  implementation of the I-Tree is based on 

the FP-tree data structure, which is very effective in providing 
a compact and lossless representation of relation R. However, 

since the two index components are designed to be 

independent, alternative I-Tree data structures can be easily 

integrated in the IMine index.  

The I-Tree associated to relation R is actually  a forest of 
prefix-trees, where each tree represents a group of transactions 

all sharing one or more items. Each node in the I-Tree 

corresponds to an item in R. Each path in the I-Tree is an 

ordered sequence of nodes and represents one or more 

transactions in R. Each item in relation R is associated to one 
or more I-Tree nodes and each transaction in R is represented 

by a unique I-Tree path. 

 
It reports a small data set used as a running example, and the 

complete structure of the corresponding IMine index. In the I-

Tree paths, nodes are sorted by decreasing support of the 
corresponding items. In the case of items with the same 

support, nodes are sorted by item lexicographical order. In the 

I-Tree, the common prefix of two transactions is represented 

by a single path. For instance, consider transactions 3, 4, and 

9 in the example data set. These transactions, once sorted as  
described above, share the common prefix [e:3,h:3], which is  

a single path in the I-Tree. Node [h:3] is the root of two sub 

paths, representing the remaining items in the considered 

transactions. 

Each I-Tree node is associated with a node support value, 
representing the number of transactions which contain 

(without any different interleaved item) all the items in the 

sub path reaching the node. For example, in sub path [e:3, 

h:3], the support of node [h:3] is 3. Hence, this sub path 

represents three transactions. Each item is associated to one or 
more nodes. The item support is obtained by adding the 

support of all nodes including the item.  

Nodes in the I-Tree are linked by means of pointers which 

allow selectively loading from disk the index portion 

necessary for the extraction task. Each node contains three 
pointers to nodes in the tree. Each pointer stores the physical 

location of the corresponding node. An arbitrary node  

includes the following links: 1) Parent pointer. 2) First child 

pointer (dashed edge linking node [p:3] to node [g:2]). When 

a node has more direct descendants, this pointer points to the 
first child node inserted in the I-Tree. 3) Right brother pointer. 

When a node has many brothers, the pointer points to the first 

brother node inserted in the I-Tree after the current node. 

These pointers allow both bottom-up and top-down tree 

traversal, thus enabling item set extraction with various types 
of constraints.  

 
The I-Tree is stored in the relational table TI_Tree, which 

contains one record for each I-Tree node. Each record 

contains node identifier, item identifier, node support, and 

pointers to the parent, first child, and right brother nodes. 
Each pointer stores the physical location of the record in table 

TI_Tree representing the corresponding node.  

2.1.2 I-Btree 
The I-Btree allows selectively accessing the I-Tree 

disk blocks during the extraction process. It is based on a 

B+Tree structure. The I-Btree for the example data set and a 

portion of the pointed I-Tree. For each item i in relation R, 

there is one entry in the I-Btree. In particular, the I-Btree leaf 
associated to i contains i’s item support and pointers to all 

nodes in the I-Tree associated to item i. Each pointer stores 

the physical location of the record in table TI_Tree storing the 

node. The pointers to the I-Tree nodes associated to item r. 

 

2.2 IMine Data Access Methods  
The IMine index structure is independent of the adopted item 

set extraction algorithm. Hence, different state-of-theart 
algorithms may be employed, once data has been loaded in 

memory. The in-memory representation suitable for the 

selected extraction algorithm is employed. Depending on the 

enforced support and/or item constraints and on the selected 

algorithm for item set extraction, a different portion of the 
IMine index should be accessed. Wedevised three data access 

methods to load from the IMine index the following 

projections of the original database: 1) Frequent-item based 

projection, to support projection-based algorithms. 2) 

Support-based projection, to support level based, and array -
based algorithms. 3) Item-based projection, to load all 

transactions where a specific item occurs, enabling constraint 

enforcement during the extraction process.  

Since IMine is a covering index, the original database is never 

accessed. The IMine index allows selectively loading into 
memory only the index blocks used for the local search. 

Hence, it supports a reduction of disk reads. Since only a 

small fragment of the data is actually loaded in memory, more 

memory space is available for the extraction task. Read disk 

blocks are stored in the buffer cache memory of PostgreSQL.  
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Table TI_Tree and the I-Btree are accessed by using 

the read functions available in the PostgreSQL access 

methods. 
 

3 .ITEM SET MINING 
Several algorithms have been proposed for item set extraction. 
These algorithms are different mainly in the adopted main 

memory data structures and in the strategy to visit the search 

space. The IMine index can support all these different 

extraction strategies. Since the IMine index is a disk resident 

data structure, the process is structured in two sequential 
steps: 1) the needed index data is loaded and 2) item set 

extraction takes place on loaded data. The data access 

methods presented allow effectively loading the data needed 

for the current extraction phase. Once data are in memory, the 

appropriate algorithm for item set extraction can be applied. 
Frequent item set extraction by means of two representative 

state-of-the-art approaches, i.e., FP-growth and LCM v.2, is 

described.  

 

3.1 Frequent Item Set Extraction 
We present two approaches, denoted as FP-based and LCM-

based algorithms, which are an adaptation of the FP-Growth 

algorithm and LCM v.2 algorithm, respectively. 

FP-based algorithm 
The FP-growth algorithm stores the data in a prefix-tree 

structure called FP-tree. First, it computes item support. Then, 
for each transaction, it stores in the FP-tree its subset 

including frequent items. Items are considered one by one. 

For each item, extraction takes place on the frequent-item 

projected database, which is generated from the original FP-

tree and represented in a FP-tree based structure. 
The FP-based algorithm selects frequent items by means of 

the get_freq_items function. For each item, the corresponding 

projected database is loaded from the IMine index by means  

of the Load_Freq_Item_Projected_DB access method. Then, 

the original FP-growth algorithm is run. With respect to, the 
FP-based approach reduces memory occupation by loading in 

memory only the projection exploited in the current extraction 

phase. Hence, more memory space is available for the 

extraction process. Data access overhead has been further 

reduced by exploiting correlation. Items considered in 
sequence may occur in correlated index paths. When the next 

item is considered, its paths are already available in memory 

and do not have to be read again.  

LCM-based algorithm 
The LCM v.2 algorithm loads in memory the support-based 

projection of the original database. First, it reads the 

transactions to count item support. Then, for each transaction, 

it loads the subset including frequent items. Data are 
represented in memory by means of an array -based data 

structure, on which the extraction takes place. 

In the LCM-based algorithm, the database projection is read 

from the IMine index by means of the Load_Support_ 

Projected_DB access method. Data are stored in the 
appropriate array-based structure, on which the original LCM 

v.2 algorithm is run. Since I-Tree paths concisely represent 

transactions, reading the database projection from the IMine 

index instead of from the original database is more effective 

in large databases 

.4.PROPOSED RULE MINING SCHEME 
The item set extraction and indexing operations are integrated 

in the system. The IMine scheme is improved to handle 
incremental data. Reindexing process is optimized. Data 

structure is updated to handle all data distribution. 

Enhancement of index mine scheme 
The association rule mining algorithms uses the candidate set 

and item sets for the frequent pattern mining process. The 

minimum support and minimum confidence values are used to 

select the interested rules. The candidate sets and item sets are 

prepared for each instance of rule mining process. The 
attribute analysis and frequency estimation operations are 

carried out for each rule mining process. All the candidate and 

item set values are stored in the primary memory only. The 

index mining model stores all the candidate set and item set 

values under the database. The indexing task is performed on 
the candidate set and item set collections.  

Support and confidence estimation are performed on the 

indexed data items. The indexing scheme is designed for the 

static data sets. All the transaction data values are stored in a 

database. The attribute analysis, candidate set and item set 
generation, frequency estimation and indexing operation are 

done on the fixed data sets. Incremental data sets are not 

supported by the index mine scheme. The system is designed 

to enhance the index mine scheme to adapt the indexing and 

rule mining operations on incremental databases.  Transaction 
table is passed into new data entry, data update and remove 

operations. Enhanced index mine scheme updates the index 

with respect to the data value changes. Reindexing is not 

required in the enhanced index mine scheme.  The index is  

refreshed in the new index mine scheme. 
   

The Following are the Experimental Results:  
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The system is designed to manage transactional data and 

indexes. The system also maintains item sets in the database. 

The indexes are used to extract rules. Transactional data can 
be managed incrementally. The system is divided into four 

major modules. They are Item set extraction, Indexing 

process, Incremental transaction management and Rule 

mining process. 

 

4.1. Item set Extraction 

The item set extraction process is performed for the selected 

transactional data. Attribute names and its values are used for 
the item set extraction process. Item sets are build with two or 

more attribute values. Item sets are physically stored in the 

database. Transaction list shows the transaction table 

properties. Column information are extracted in attribute 

selection module. Attribute name and their data values are 
used in the item set extraction process. Item set list shows the 

list of item sets in the transactional data.  
 

4.2. Indexing Process 
The indexing process is applied on the extracted item sets. 
The index maintains the itemsets and associated transaction 

information. The index also maintains the access information. 

The index is also stored in the database.  
 

4.3.Incremental Transaction Management 
The data add and remove operations are handled in 

incremental transaction management process. The system 
updates the transactional data and itemset values. The itemset 

indexs are also updated. The item set frequency is also 

updated.  
 

4.4. Rule mining Process 
The rule mining process is designed to extract frequent item 

sets. The support value is used in the rule mining process. The 
rule mining process has done under the index data values. The 

rules can be extracted with item set relationships. 

 

5 CONCLUSIONS 
The IMine index is a novel index structure that supports 

efficient item set mining into a relational DBMS. It has been 

implemented into the PostgreSQL open source DBMS, by 

exploiting its physical level access methods. The IMine index 
provides a complete and compact representation of 

transactional data. It is a general structure that efficiently 

supports different algorithmic approaches to item set 

extraction. Selective access of the physical index blocks  

significantly reduces  the I/O costs and efficiently exploits 
DBMS buffer management strategies. This approach, albeit 

implemented into a relational DBMS, yields performance 

better than the state-of-the-art algorithms accessing data on a 

flat file and is characterized by a linear scalability also for 
large data sets.  

 Provided a complete and compact representation of 

transactional data 

 Supports different algorithmic approaches to item set 

extraction 
 Performance better than the state-of-the-art algorithm 

 FP-growth , LCM v.2 
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