
International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

11

IMine: Index Support for Item Set Mining in Item Set

Extraction

T.Senthil Prakash
PhD Research Scholar, PRIST University,

Thanjavur

Dr.P.Thangaraj
Professor Head, Dept of CSE, Bannari Amman

Institute of Technology, Sathyamangalam

ABSTRACT
Relational database management systems manages the tables
with predefined indexes. In RDBMS indexes are created on

the basis of attribute values. The Imine indexing scheme is

used to index item sets in relational databases. The index

creation is performed with out any constraints. IMine provides

a complete representation of the original database. The Imine
indexing scheme reduces the input/output cost for item set

extraction and management process. The Imine index method

supports different item set extraction algorithms. Different

rule mining algorithms are supported by Imine index scheme.

At present the Imine index scheme is developed under
PostgreSQL DBMS.

The item set extraction and indexing operations are integrated

in the system. The IMine scheme is improved to handle

incremental data. In the incremental data handling mechanism

the item sets and indexes are updated with respect
transactional database changes. The data add, modify and

remove operations are supported by the proposed index

method. Reindexing process is optimized. Data structure is

updated to handle all data distribution. The proposed item set

extraction and indexing scheme is designed for the Oracle
relational database. The system development is planned using

J2EE environment.

General and compact structure - Provide tight integration of

item set extraction - Can be efficiently exploited by different

item set extraction algorithm - In particular, FP-growth and
LCM v.2 - Has been integrated into the PostgreSQL DBMS

KEYWORDS
IMine, CFP Tree, I-B Tree, LCM, FP-Growth

1 INTRODUCTION
Relational DBMSs exploit indices, which are ad hoc data

structures, to enhance query performance and support the

execution of complex queries. A similar approach is proposed
to support data mining queries. The Imine index is a novel

data structure that provides a compact and complete

representation of transactional data supporting efficient item

set extraction from a relational DBMS. It is characterized by

the following properties:
1. It is a covering index. No constraint is enforced during the

index creation phase. Hence, the extraction can be performed

by means of the index alone, without accessing the original

database. The data representation is complete and allows

reusing the index for mining item sets with any support
threshold.

2. The IMine index is a general structure which can be

efficiently exploited by various item set extraction algorithms.

These algorithms can be characterized by different in-memory

data representations and techniques for visiting the search

space. Data access functions have been devised for efficiently

loading in memory the index data. Once in memory, data is

available for item set extraction by means of the algorithm of

choice. The IMine index is evaluated with FP-growth and
LCM v.2. Furthermore, the IMine index also supports the

enforcement of various constraint categories.

3. The IMine physical organization supports efficient data

access during item set extraction. Correlation analysis allows

to discover data accessed together during pattern extraction.
To minimize the number of physical data blocks read during

the mining process, correlated information is stored in the

same block.

4. IMine supports item set extraction in large data sets. A

direct writing technique is exploited to avoid representing in
memory the entire large data set. Direct materialization has a

limited impact on the final index size because it is applied

only on a reduced portion of the data set.

2 IMINE INDEX SCHEME
The transactional data set D is represented, in the

relational model, as a relationR. Each tuple inRis a pair

(TransactionID, ItemID). The IMine index provides a
compact and complete representation of R. Hence, it allows

the efficient extraction of item sets from R, possibly enforcing

support or other constraints. We present the general structure

of the IMine index. The physical organization of the index is

presented together with a discussion of access cost.

2.1 IMine Index Structure
The structure of the IMine index is characterized by two
components: the Item set-Tree and the Item-Btree. The two

components provide two levels of indexing. The Item set-Tree

(I-Tree) is a prefix-tree which represents relation R by means

of a succinct and lossless compact structure. The Item-Btree

(I-Btree) is a B+Tree structure which allows reading selected
I-Tree portions during the extraction task. For each item, it

stores the physical locations of all item occurrences in the I-

Tree. Thus, it supports efficiently loading from the I-Tree the

transactions in R including the item. In the following, we

describe in more detail the I-Tree and the I-Btree structures.

2.1.1 I-Tree
An effective way to compactly store transactional records is to

use a prefix-tree. Trees and prefix-trees have been frequently
used in data mining and data warehousing indices, including

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

12

cube forest, FP-tree, H-tree, Inverted Matrix, and Patricia-

Tries. Our current implementation of the I-Tree is based on

the FP-tree data structure, which is very effective in providing
a compact and lossless representation of relation R. However,

since the two index components are designed to be

independent, alternative I-Tree data structures can be easily

integrated in the IMine index.

The I-Tree associated to relation R is actually a forest of
prefix-trees, where each tree represents a group of transactions

all sharing one or more items. Each node in the I-Tree

corresponds to an item in R. Each path in the I-Tree is an

ordered sequence of nodes and represents one or more

transactions in R. Each item in relation R is associated to one
or more I-Tree nodes and each transaction in R is represented

by a unique I-Tree path.

It reports a small data set used as a running example, and the

complete structure of the corresponding IMine index. In the I-

Tree paths, nodes are sorted by decreasing support of the
corresponding items. In the case of items with the same

support, nodes are sorted by item lexicographical order. In the

I-Tree, the common prefix of two transactions is represented

by a single path. For instance, consider transactions 3, 4, and

9 in the example data set. These transactions, once sorted as
described above, share the common prefix [e:3,h:3], which is

a single path in the I-Tree. Node [h:3] is the root of two sub

paths, representing the remaining items in the considered

transactions.

Each I-Tree node is associated with a node support value,
representing the number of transactions which contain

(without any different interleaved item) all the items in the

sub path reaching the node. For example, in sub path [e:3,

h:3], the support of node [h:3] is 3. Hence, this sub path

represents three transactions. Each item is associated to one or
more nodes. The item support is obtained by adding the

support of all nodes including the item.

Nodes in the I-Tree are linked by means of pointers which

allow selectively loading from disk the index portion

necessary for the extraction task. Each node contains three
pointers to nodes in the tree. Each pointer stores the physical

location of the corresponding node. An arbitrary node

includes the following links: 1) Parent pointer. 2) First child

pointer (dashed edge linking node [p:3] to node [g:2]). When

a node has more direct descendants, this pointer points to the
first child node inserted in the I-Tree. 3) Right brother pointer.

When a node has many brothers, the pointer points to the first

brother node inserted in the I-Tree after the current node.

These pointers allow both bottom-up and top-down tree

traversal, thus enabling item set extraction with various types
of constraints.

The I-Tree is stored in the relational table TI_Tree, which

contains one record for each I-Tree node. Each record

contains node identifier, item identifier, node support, and

pointers to the parent, first child, and right brother nodes.
Each pointer stores the physical location of the record in table

TI_Tree representing the corresponding node.

2.1.2 I-Btree
The I-Btree allows selectively accessing the I-Tree

disk blocks during the extraction process. It is based on a

B+Tree structure. The I-Btree for the example data set and a

portion of the pointed I-Tree. For each item i in relation R,

there is one entry in the I-Btree. In particular, the I-Btree leaf
associated to i contains i’s item support and pointers to all

nodes in the I-Tree associated to item i. Each pointer stores

the physical location of the record in table TI_Tree storing the

node. The pointers to the I-Tree nodes associated to item r.

2.2 IMine Data Access Methods
The IMine index structure is independent of the adopted item

set extraction algorithm. Hence, different state-of-theart
algorithms may be employed, once data has been loaded in

memory. The in-memory representation suitable for the

selected extraction algorithm is employed. Depending on the

enforced support and/or item constraints and on the selected

algorithm for item set extraction, a different portion of the
IMine index should be accessed. Wedevised three data access

methods to load from the IMine index the following

projections of the original database: 1) Frequent-item based

projection, to support projection-based algorithms. 2)

Support-based projection, to support level based, and array -
based algorithms. 3) Item-based projection, to load all

transactions where a specific item occurs, enabling constraint

enforcement during the extraction process.

Since IMine is a covering index, the original database is never

accessed. The IMine index allows selectively loading into
memory only the index blocks used for the local search.

Hence, it supports a reduction of disk reads. Since only a

small fragment of the data is actually loaded in memory, more

memory space is available for the extraction task. Read disk

blocks are stored in the buffer cache memory of PostgreSQL.

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

13

Table TI_Tree and the I-Btree are accessed by using

the read functions available in the PostgreSQL access

methods.

3 .ITEM SET MINING
Several algorithms have been proposed for item set extraction.
These algorithms are different mainly in the adopted main

memory data structures and in the strategy to visit the search

space. The IMine index can support all these different

extraction strategies. Since the IMine index is a disk resident

data structure, the process is structured in two sequential
steps: 1) the needed index data is loaded and 2) item set

extraction takes place on loaded data. The data access

methods presented allow effectively loading the data needed

for the current extraction phase. Once data are in memory, the

appropriate algorithm for item set extraction can be applied.
Frequent item set extraction by means of two representative

state-of-the-art approaches, i.e., FP-growth and LCM v.2, is

described.

3.1 Frequent Item Set Extraction
We present two approaches, denoted as FP-based and LCM-

based algorithms, which are an adaptation of the FP-Growth

algorithm and LCM v.2 algorithm, respectively.

FP-based algorithm
The FP-growth algorithm stores the data in a prefix-tree

structure called FP-tree. First, it computes item support. Then,
for each transaction, it stores in the FP-tree its subset

including frequent items. Items are considered one by one.

For each item, extraction takes place on the frequent-item

projected database, which is generated from the original FP-

tree and represented in a FP-tree based structure.
The FP-based algorithm selects frequent items by means of

the get_freq_items function. For each item, the corresponding

projected database is loaded from the IMine index by means

of the Load_Freq_Item_Projected_DB access method. Then,

the original FP-growth algorithm is run. With respect to, the
FP-based approach reduces memory occupation by loading in

memory only the projection exploited in the current extraction

phase. Hence, more memory space is available for the

extraction process. Data access overhead has been further

reduced by exploiting correlation. Items considered in
sequence may occur in correlated index paths. When the next

item is considered, its paths are already available in memory

and do not have to be read again.

LCM-based algorithm
The LCM v.2 algorithm loads in memory the support-based

projection of the original database. First, it reads the

transactions to count item support. Then, for each transaction,

it loads the subset including frequent items. Data are
represented in memory by means of an array -based data

structure, on which the extraction takes place.

In the LCM-based algorithm, the database projection is read

from the IMine index by means of the Load_Support_

Projected_DB access method. Data are stored in the
appropriate array-based structure, on which the original LCM

v.2 algorithm is run. Since I-Tree paths concisely represent

transactions, reading the database projection from the IMine

index instead of from the original database is more effective

in large databases

.4.PROPOSED RULE MINING SCHEME
The item set extraction and indexing operations are integrated

in the system. The IMine scheme is improved to handle
incremental data. Reindexing process is optimized. Data

structure is updated to handle all data distribution.

Enhancement of index mine scheme
The association rule mining algorithms uses the candidate set

and item sets for the frequent pattern mining process. The

minimum support and minimum confidence values are used to

select the interested rules. The candidate sets and item sets are

prepared for each instance of rule mining process. The
attribute analysis and frequency estimation operations are

carried out for each rule mining process. All the candidate and

item set values are stored in the primary memory only. The

index mining model stores all the candidate set and item set

values under the database. The indexing task is performed on
the candidate set and item set collections.

Support and confidence estimation are performed on the

indexed data items. The indexing scheme is designed for the

static data sets. All the transaction data values are stored in a

database. The attribute analysis, candidate set and item set
generation, frequency estimation and indexing operation are

done on the fixed data sets. Incremental data sets are not

supported by the index mine scheme. The system is designed

to enhance the index mine scheme to adapt the indexing and

rule mining operations on incremental databases. Transaction
table is passed into new data entry, data update and remove

operations. Enhanced index mine scheme updates the index

with respect to the data value changes. Reindexing is not

required in the enhanced index mine scheme. The index is

refreshed in the new index mine scheme.

The Following are the Experimental Results:

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

14

The system is designed to manage transactional data and

indexes. The system also maintains item sets in the database.

The indexes are used to extract rules. Transactional data can
be managed incrementally. The system is divided into four

major modules. They are Item set extraction, Indexing

process, Incremental transaction management and Rule

mining process.

4.1. Item set Extraction

The item set extraction process is performed for the selected

transactional data. Attribute names and its values are used for
the item set extraction process. Item sets are build with two or

more attribute values. Item sets are physically stored in the

database. Transaction list shows the transaction table

properties. Column information are extracted in attribute

selection module. Attribute name and their data values are
used in the item set extraction process. Item set list shows the

list of item sets in the transactional data.

4.2. Indexing Process
The indexing process is applied on the extracted item sets.
The index maintains the itemsets and associated transaction

information. The index also maintains the access information.

The index is also stored in the database.

4.3.Incremental Transaction Management
The data add and remove operations are handled in

incremental transaction management process. The system
updates the transactional data and itemset values. The itemset

indexs are also updated. The item set frequency is also

updated.

4.4. Rule mining Process
The rule mining process is designed to extract frequent item

sets. The support value is used in the rule mining process. The
rule mining process has done under the index data values. The

rules can be extracted with item set relationships.

5 CONCLUSIONS
The IMine index is a novel index structure that supports

efficient item set mining into a relational DBMS. It has been

implemented into the PostgreSQL open source DBMS, by

exploiting its physical level access methods. The IMine index
provides a complete and compact representation of

transactional data. It is a general structure that efficiently

supports different algorithmic approaches to item set

extraction. Selective access of the physical index blocks

significantly reduces the I/O costs and efficiently exploits
DBMS buffer management strategies. This approach, albeit

implemented into a relational DBMS, yields performance

better than the state-of-the-art algorithms accessing data on a

flat file and is characterized by a linear scalability also for
large data sets.

 Provided a complete and compact representation of

transactional data

 Supports different algorithmic approaches to item set

extraction
 Performance better than the state-of-the-art algorithm

 FP-growth , LCM v.2

6. REFERENCE
[1] M. El-Hajj and O.R. Zaiane, “Inverted Matrix: Efficient

Discovery of Frequent Items in Large Datasets in the

Context of Interactive Mining,” Proc. Ninth ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (SIGKDD), 2003.

[2] G. Grahne and J. Zhu, “Mining Frequent Itemsets from

Secondary Memory,” Proc. IEEE Int’l Conf. Data

Mining, 2004.

[3] G. Ramesh, and M. Zaki, “Indexing and Data Access
Methods for Database Mining,” Proc. ACM Workshop

Data Mining and Knowledge Discovery (DMKD), 2002.

[4] Y.-L. Cheung, “Mining Frequent Itemsets without

Support Threshold: With and without Item Constraints,”

IEEE Trans. Knowledge and Data Eng., vol. 16, no. 9,
pp. 1052-1069, Sept. 2004.

[5] G. Cong and B. Liu, “Speed-Up Iterative Frequent

Itemset Mining with Constraint Changes,” Proc. IEEE

Int’l Conf. Data Mining, pp. 107-114, 2002.

[6] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver. 2:
Efficient Mining Algorithms for

Frequent/Closed/Maximal Itemsets,” Proc. IEEE ICDM

Workshop Frequent Itemset Mining Implementations,

2004.

[7] J. Pei, J. Han, and L.V.S. Lakshmanan, “Pushing
Convertible Constraints in Frequent Itemset Mining,”

Data Mining and Knowledge Discovery, vol. 8, no. 3, pp.

227-252, 2004.

[8] G. Grahne and J. Zhu, “Efficiently Using Prefix-Trees in

Mining Frequent Itemsets,” Proc. IEEE ICDM Workshop
Frequent Itemset Mining Implementations, 2003.

