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ABSTRACT:   

The motivation of Grid computing is to aggregate the power of 

widely distributed resources, and provide non-trivial services  

to users. To achieve this goal, an efficient Grid scheduling 

System is an essential part of the Grid. Rather than covering 

the whole Grid scheduling area, this survey provides a review 
of the subject mainly from the perspective of scheduling 

algorithms. In this review, the challenges for Grid scheduling 

are identified. First, the architecture of components involved in 

scheduling is briefly introduced to provide an intuitive image 

of the Grid scheduling process. Then various Grid scheduling 
algorithms are discussed from different points of view, such as  

static vs. dynamic policies, objective functions, applications 

models, adaptation, constraints, strategies dealing with 

dynamic behavior of resources, and so on. Thus, in this paper, 

the following definition for the term Grid adopted: “A type of 
parallel and distributed system that enables the sharing, 

selection, and aggregation of geographically distributed 

autonomous and heterogeneous resources dynamically at 

runtime depending on their availability, capability, 

performance, cost, and users' quality-of-service requirements”. 
To facilitate the discussion, the following frequently used 

terms are defined: A task is an atomic unit to be scheduled by 

the scheduler and assigned to a resource. The properties of a 

task are parameters like CPU/memory requirement, deadline, 

priority, etc. A job (or metatask, or application) is a set of 
atomic tasks that will be carried out on a set of resources. Jobs 

can have a recursive structure, meaning that jobs are composed 

of sub-jobs and/or tasks, and sub-jobs can themselves be 

decomposed further into atomic tasks. In this paper, the term 

job, application and metatask are interchangeable. A resource 
is something that is required to carry out an operation, for 

example: a processor for data processing, a data storage device, 

or a network link for data transporting. A site (or node) is an 

autonomous entity composed of one or multiple resources. A 

task scheduling is the mapping of tasks to a selected group of 
resources which may be distributed in multiple administrative 

domains.  
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INTRODUCTION 

1. Mapping Independent Tasks 
Mixed-machine heterogeneous computing (HC) environments 

utilize a distributed suite of different high-performance 
machines, interconnected with high-speed links, to perform 

different computationally intensive applications that have 

diverse computational requirements. HC environments are 

well suited to meet the computational demands of large, 

diverse groups of tasks. The problem of optimally mapping 
(defined as matching and scheduling)these tasks onto the 

machines of a distributed HC environment has been shown, in 

general, to be NP-complete, requiring the development of 

heuristic techniques. Selecting the best heuristic to use in a 

given environment, however, remains a difficult problem, 

because comparisons are often clouded by different 

underlying assumptions in the original study of each 
heuristic.Therefore, a collection of 11 heuristics from the 

literature has been selected, adapted, implemented, and 

analyzed under one set of common assumptions.It is assumed 

that the heuristics derive a mapping statically (i.e., off-line). It 

is also assumed that a metatask (i.e., a set of independent, 
noncommunicating tasks) is being mapped and that the goal is  

to minimize the total execution time of the metatask. The 11 

heuristics examined are Opportunistic Load Balancing, 

Minimum Execution Time, Minimum Completion Time, 

Min_min, Max_min, Duplex, Genetic Algorithm, Simulated 
Annealing, Genetic Simulated Annealing, Tabu, and A*. This 

study provides one even basis for comparison and insights 

into circumstances where one technique will out-perform 

another. The evaluation procedure is specified, the heuristics 

are defined, and then comparison results are discussed. It is 
shown that for the cases studied here, the relatively simple 

Min_min heuristic performs well in comparison to the other 

techniques. The matching of tasks to machines and scheduling 

the execution order of these tasks is referred to as mapping. 

For these studies, let a metatask be defined as a collection of 
independent tasks with no intertask data dependencies. The 

mapping of the metatasks is being performed statically (i.e., 

off-line, or in a predictive manner). The goal of this mapping 

is to minimize the total execution time of the metatask. 

Composed of independent tasks occur in many situations. For 
example, all of the jobs submitted to a supercomputer center 

by different users would constitute a metatask. Another 

example of a metatask would be a group of image processing 

applications all operating on different images.  

Static mapping is utilized in many different types of analyses 
and environments.The most common use of static mapping is 

for predictive analyses (e.g.,  to plan the work for the next day 

and_or to meet a deadline). For example, assume a NASA  

center knows it will have a 2-hour communication window 

with a probe tomorrow. In those 2 hours, NASA center will 
have to analyze the data the probe sends back  and determine 

if the probe needs to be adjusted before communications 

blackout. Therefore, the NASA center will want to plan the 

most efficient way to handle the data a priori and determine if 

the deadline can be met. Another use of static map-ping is for 
``what if '' simulation studies. For example, a system 

administrator may need to justify the benefits of purchasing 

another machine for an HC suite. Static mapping is also used 

for post-mortem analyses. For example, a static mapper can 

be used ex post facto to evaluate how well an on-line (i.e.,  
dynamic) mapper is performing. Future high-powered 
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computational grids [6] will also be able to utilize static 

mapping techniques to distribute resources and computational 

power. The wide applicability of static mapping makes  it an 
important area for ongoing research.It is also assumed that 

each machine executes a single task at a time (i.e., no mul-

titasking), in the order in which the tasks are assigned. The 

size of the metatask (i.e., the number of tasks to execute), the 

number of machines in the HC suite, are static and known 
beforehand. This study provides one even basis for 

comparison and insights into circum-stances where one 

mapping technique will out-perform another. The evaluation 

procedure is specified, the heuristics are defined, and then 

comparison results are shown. 

2. Simulation Model        
The 11 static mapping heuristics were evaluated using 

simulated execution times for an HC environment. Because 
these are static heuristics, it is assumed that an accurate 

estimate of the expected execution time for each task on each 

machine is  known prior to execution and contained within a 

ETC (expected time to compute) matrix. The assumption that 

these estimated expected execution times are known is 
commonly made when studying mapping heuristics for HC 

systems [9] Approaches for doing this estimation based on 

task profiling and analytical benchmarking are discussed in 

[2]. One row of the ETC matrix contains the estimated 

execution times for a given task on each machine. Similarly, 
one column of the ETC matrix consists of the estimated 

execution times of a given machine for each task in the 

metatask. Thus, for an arbitrary task ti and an arbitrary 

machine mj , ETC(ti , mj) is the estimated execution time of ti 

on mj .The ETC(ti , mj) entry could be assumed to include the 
time to move the executables and data associated with task ti 

from their known source to machine mj . For cases when it is 

impossible to execute task ti on machine mj (e.g., if 

specialized hardware is needed), the value of ETC(ti , mj) is  

set to infinity. For the simulation studies, characteristics of the 
ETC matrices were varied in an attempt to represent a range 

of possible HC environments. The ETC matrices used were 

generated using the following method. Initially, a {_1 baseline 

column vector, B, of floating point values is created. Let ,b be 

the upper bound of the range of possible values within the 
baseline vector. The baseline column vector is generated by 

repeatedly selecting a uniform random number, xi b # [1, ,b), 

and letting B(i)=xi b for 0_i<{. Next, the rows of the ETC 

matrix are constructed. Each element ETC(ti , mj) in row i of 

the ETC matrix is created by taking the baseline value, B(i),  
and multiplying it by a uniform random number, xi,  jr ,  which 

has an upper bound of ,r . This new random number, xi, jr # 

[1, ,r), is called a row multiplier. One row requires  + different 

row multipliers, 0_j<+. Each row i of the ETC matrix can then 

be described as ETC(ti , mj)=B(i)_xi, jr , for 0_j<+. (The 
baseline column itself does not appear in the final ETC 

matrix.) This process is repeated for each row until the {_+ 

ETC matrix is full.  Therefore, any given value in the ETC 

matrix is within the range [1, ,b_,r) [9].To evaluate the 

heuristics for different mapping scenarios, the characteristics 
of the ETC matrix were varied based on several different 

methods from [4]. The amount of variance among the 

execution times of tasks in the metatask for a given machine 

is defined as task heterogeneity. Task heterogeneity was 

varied by changing the upper bound of the random numbers  
within the baseline column vector.  

 

  

Fig1.   Flow Diagram of  Global Grid Simulation  

3. Current Model 
For a DC based IR-drop analysis, an estimated peak DC 

current is often used when the circuit design is still 

incomplete. In [8], this simple DC peak current model is  

extended to an AC peak current model. Based on the 
estimated average chip current and an average/peak current 

factor, the current profile for a single clock cycle is  

constructed. This current profile is then evenly distributed 

across all power grid connections by dividing the chip -level 

current by the number of power grid connections at each time 
point in the clock cycle. This method results in a low, wide 

current profile for each gate, and all gate currents are perfectly 

synchronized. In an actual circuit, however, each gate 

produces a much narrower and taller current pulse when 

switched, For a 500MHz design, a typical gate produces a 
current pulse 50ps wide, only a fraction of the 2ns pulse width 

that will be generated in the above approach. Also, gate 

currents are not synchronized, and switch at various times 

during the clock cycle. Decoupling capacitance is much more 

effective in supplying the needed charge for many short , 
asynchronous current spikes than for a set of slow, 

synchronized current pulses. Thus, this simplified current 

model can produce a significant error in power grid analysis. 

An accurate model can be obtained by a fast transistor level 

simulation of the circuit blocks using chip-level vectors, 
monitoring the individual gate currents. Each gate can then be 

modeled by a current source matching its observed profile. 

However, this procedure is prohibitively expensive for very 

large processors. More importantly, most power grid design is  
performed before the circuit design is completed and 

transistor level simulation can be performed. Once all circuit 

designs are completed, only limited, small modifications can 

be made to the power grid. Hence, there is a critical need for a 

good early current model  a model that not only matches the 
total current profile at the chip-level, but matches also the 

gate-level current profiles and mimics their random switching 

behavior.  
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4. Grid Resistance Models 
The parasitic inductances of the power grid in a package must 

be extracted and modeled to study their effect on the power 

grid voltage and resonance behavior. The major sources of 

parasitic inductances in the package are the power planes, ball 

arrays/bond wires, and package vias. A number of inductance 
extraction tools and techniques [10] are available to extract 

the model of the package power network. Defining ports for 

the package network at each supply and ground input to the 

package and at connection  points to the die, the extracted 

model can then be reduced to a compact n-port model. The n-
port model is a completely dense matrix which represents the 

self and mutual inductances between port connections. The 

parasitic resistances of the on-chip power and ground grid are 

either extracted from the layout with a commercial extraction 

tool or, in early phases, are determined directly from wire 
sizes using sheet resistance. The n-port model of the package 

and the RC elements of the on-chip power model are then 

combined with the extracted decoupling capacitance models  

and current source models. Finally, the combined power grid 

network is simulated using the techniques  

 5. Heuristic Descriptions  
The definitions of the 11 static metatask mapping heuristics 

are provided below. First, some preliminary terms must be 
defined. Machine availability time, mat (mj), is the earliest 

time machine mj can complete the execution of all the tasks 

that have previously been assigned to it (based on the ETC 

entries for those tasks). The completion time for a new task ti 

on machine mj , ct(ti , mj), is the machine availability  time for 
mj plus the execution time of task ti on machine mj ,  i.e.,  ct(ti 

, mj)=mat(mj)+ETC(ti , mj). The performance criterion used 

to compare the results of the heuristics is the maximum value 

of ct(ti , mj), for 0_i<{ and 0_j<+. The maxi-mum ct(ti , mj) 

value, over 0_i<{ and 0_j<+, is the metatask execution time, 
and is called the makespan [2]. Each heuristic is attempting to 

minimize the makespan, i.e., finish execution of the metatask 

as soon as possible. The descriptions below implicitly assume 

that the machine availability times are updated after each task 

is mapped. For heuristics where the tasks are considered in  an 
arbitrary order, the order in which the tasks appeared in the 

ETC matrix was used. Most of the heuristics discussed here 

had to be adapted for this problem domain. For many of the 

heuristics, there are control parameters values and control  

function specifications that can be selected for a given 
implementation. For the studies here, such values and 

specifications were selected based on experimentation and 

information in the literature.  

 

Simulated Annealing : 

SA exploits an analogy between the way in which a metal 

cools and freezes into a minimum energy crystalline structure 

(the annealing process) and the search for a minimum in a 

more general system. SA's major advantage over other 

methods is an ability to avoid becoming trapped at local 
minima. The annealing schedule, i.e., the temperature-

decreasing rate used in SA is an important factor, which 

affects SA's rate of convergence. The algorithm employs a 

random search, which not only accepts changes that decrease 

objective function " f ", but also some changes that increase it.  

If the generation function of the simulated annealing 

algorithm is represented as: 

 

                                                                                                

(1) 

Where Ti (k) is the temperature in dimension i at time k. The 

generation probability will be represented by 

 

                

                                                                                                
(2) 

        

                                                                                                

(3) 

It is straightforward to prove that an annealing schedule for  

 

                                          

                                                                                (4) 

Where bi > 0 is a constant parameter and k0 is a sufficiently 
large constant to satisfy (4), if the generation functions in (1) 

is adopted. 

OLB: Opportunistic Load Balancing (OLB) assigns each task, 

in arbitrary order, to the next machine that is expected to be 

available, regardless of the task's expected execution time on 
that machine [3]. The intuition behind OLB is to keep all 

machines as busy as possible. One advantage of OLB is its 

simplicity,but because OLB does not consider expected task 

execution times, the mappings it  finds can result in very poor 

makespans. 

MET: In contrast to OLB, Minimum Execution Time (MET) 

assigns each task, in arbitrary order, to the machine with the 

best expected execution time for that task, regardless of that 

machine's availability [7]. The motivation behind MET is to 

give each task to its best machine. This can cause a severe 
load imbalance across machines. In general, this heuristic is 

obviously not applicable to HC environments characterized by 

consistent ETC matrices. MCT: Minimum Completion Time 

(MCT) assigns each task, in arbitrary  order, to the machine 

with the minimum expected completion time for that task 
[3].This causes some tasks to be assigned to machines that do 

not have the minimum execution time for them. The intuition 

behind MCT is to combine the benefits of OLB and MET, 

while avoiding the circumstances in which OLB and MET 

perform poorly. 

Min_min: The Min_min heuristic begins with the set U of all 

unmapped tasks. Then, the set of minimum completion times, 

M=[min0_j<+ (ct(ti , mj)), for each ti # U], is found. Next, the 

task with the overall minimum completion time from M  is 
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selected and assigned to the corresponding machine (hence 

the name Min_min). Last, the newly mapped task is removed 

from U, and the process repeats until all  tasks are mapped 
(i.e., U is empty) [13]. Min_min is based on the minimum 

completion time, as is MCT. However, Min_min considers all 

unmapped tasks during each mapping decision and MCT only 

considers one task at a time.  Min_min maps the tasks in the 

order that changes the machine availability status by the least 
amount that any assignment could. Let ti be the first task 

mapped by Min_min onto an empty system. The machine that 

finishes ti the earliest, say mj, is also the machine that 

executes ti the fastest. For every task that Min_min maps after 

ti , the Min_min heuristic changes the availability status of mj 
by the least possible amount for every assignment. Therefore, 

the percentage of tasks assigned to their first choice (on the 

basis of execution time) is likely to be higher for Min_min 

than for Max_min (defined next). The expectation is that a 

smaller makespan can be obtained if more tasks are assigned 
to the machines that complete them the earliest and also 

execute them the fastest. Max_min: The Max_min heuristic is  

very similar to Min_min. The Max_min heuristic also begins  

with the set U of all unmapped tasks. Then, the set of mini-

mum completion times, M, is found. Next, the task with the 
overall maximum completion time from M is selected and 

assigned to the corresponding machine (hence the name 

Max_min). Last, the newly mapped task is removed from U, 

and the process repeats until all tasks are mapped (i.e., U is 

empty) [3].Intuitively, Maximum attempts to minimize the 
penalties incurred from performing tasks with longer 

execution times. Assume, for example, that the metatask 

being mapped has many tasks with very short execution times  

and one task with a very long execution time. Mapping the 

task with the longer execution time to its best machine first 
allows this task to be executed concurrently with the 

remaining tasks (with shorter execution times). For this case, 

this would be a better mapping than a Minmin mapping, 

where all of the shorter tasks would execute first, and then the 

longer running task would execute while several machines sit 
idle. Thus, in cases similar to this example, the Max_min 

heuristic may give a mapping with a more balanced load 

across machines and a better makespan.Duplex: The Duplex 

heuristic is literally a combination of the Min_min and 

Max_min heuristics. The Duplex heuristic performs both of 
the Min_min and Max_min heuristics and then uses  the better 

solution [3]. Duplex can be per-formed to exploit the 

conditions in which either Min_min or Max_min performs 

well, with negligible overhead.  

GA: Genetic Algorithms (GAs) are a technique used for 
searching large solution spaces [2]. The version of the 

heuristic used for this study was adapted from [4] for this 

particular problem domain. Figure 1 shows the steps in a 

general GA.The GA implemented here operates on a 

population of 200 chromosomes (possible mappings) for a 
given metatask. Each chromosome is a {_1 vector, where 

position i (0_i<{) represents task ti , and the entry in position i 

is the machine to which the task has been mapped. The initial 

population is generated using two methods :(a) 200 randomly 

generated chromosomes from a uniform distribution, or (b) 
one chromosome that is the Min_min solution (i.e., mapping 

for the metatask) and 199 random solutions. The latter method 

is called seeding the population with a Min_min chromosome. 

The GA actually executes eight times (four times with initial 

populations from each method), and the best of the eight 
mappings is used as the final solution. Each chromosome has  

a fitness value, which is the makespan that results from the 

matching of tasks to machines within that chromosome. After 

the generation of  the initial population, all of the 

chromosomes in the population are evaluated based on their 

fitness value, with a smaller fitness value being a better 
mapping. Then, the main loop in Fig. 1 is entered and a rank-

based roulette wheel scheme [11] is used for selection. This 

scheme probabilistically duplicates some chromosomes and 

deletes others, where better mappings have a higher 

probability of being duplicated in the next generation. Elitism, 
the property of guaranteeing the best solution remains in the 

population [3], was also implemented. The population size 

stays fixed at 200.Next, the crossover operation selects a 

random pair of chromosomes and chooses a random point in 

the first chromosome. For the sections of both chromosomes  
from that point to the end of each chromosome, crossover 

exchanges machine assignments between corresponding tasks. 

Every chromosome is considered for crossover with a 

probability of 600. After crossover, the mutation operation is 

performed. Mutation randomly selects a chromosome, then 
randomly selects a task within the chromosome, and randomly  

reassigns it to a new machine. Every chromosome is  

considered for mutation with a probability of 400. For both 

crossover and mutation, the random operations select values 

from a uniform distribution. Finally , the chromosomes from 
this modified population are evaluated again. This completes 

one iteration of the GA. The GA stops when any one of three 

conditions are met: (a) 1000 total iterations, (b) no change in 

the elite chromosome for 150 iterations, or (c) all 

chromosomes converge to the same mapping. Until the 
stopping criterium is met, the loop repeats, beginning with the 

selection step. The stopping criterium that usually occurred in 

testing was no change in the elite chromosome in 150 

iterations. A: Simulated Annealing (SA) is an iterative 

technique that considers only one possible solution (mapping) 
for each metatask at a time. This  solution uses the same 

representation as the chromosome for the GA. The initial 

implementation of  SA was evaluated and then modified and 

refined to give a better final version. Both the initial and final 

implementations are described below. SA uses a procedure 
that probabilistically allows poorer solutions to be accepted to 

attempt to obtain a better search of the solution space 

[10].This probability is based on a system temperature that 

decreases for each iteration. As the system temperature 

``cools,'' it is more difficult for poorer solutions to be 
accepted. The initial system temperature is the makespan of 

the initial (random) mapping. The initial SA procedure 

implemented here is as follows. The first mapping is 

generated from a uniform random distribution. The mapping 

is mutated in the same manner as the GA, and the new 
makespan is evaluated. The decision algorithm for accepting 

or rejecting the new mapping is based on [10]. If the new  

makespan is better, the new mapping replaces the old one. If 

the new makespan worse (larger), a uniform random number z 

# [0, 1) is selected. Then, z is compared with y, where y=11+e 
( old makespan-new makespan temperature ). If z>y the new 

(poorer) mapping is accepted; otherwise it is rejected, and the 

old mapping is kept. GSA: The Genetic Simulated Annealing 

(GSA) heuristic is a combination of the GA and SA 

techniques . In general, GSA follows procedures similar tothe 
GA outlined above. However, for the selection process, GSA 

uses the SA cooling schedule and system temperature and a 

simplified SA decision process for accepting or rejecting a 

new chromosome. Specifically, the initial system temperature 

was set to the average makespan of the initial population and 
reduced to 900 of its current value for each iteration.  

Whenever a mutation or crossover occurs, the new 

chromosome is compared with the corresponding original 

chromosome. If the new makespan is less than the original 
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makespan plus the system temperature, then the new 

chromosome is accepted [7]. Otherwise, the original 

chromosome survives to the next iteration. Therefore, as the 
system temperature decreases, it is again more difficult for 

poorer solutions to be accepted. The two stopping criteria 

used were either (a) no change in the elite chromosome in 150 

iterations or (b) 1000 total iterations. The most  common 

stopping criteria was no change in the elite chromosome in 
150 iterations. 

Tabu: Tabu search is a solution space search that keeps track 

of the regionsof the solution space which have already been 

searched so as not to repeat a search near these areas [12]. A 

solution (mapping) uses the same representation as a 
chromosome in the GA approach.The implementation of Tabu 

search used here begins with a random mapping as the initial 

solution, generated from a uniform distribution. To 

manipulate the current solution and move through the solution 

space, a short hop is performed. The intuitive purpose of a 
short hop is to find the nearest local minimum solution within 

the solution space. The basic procedure for performing a short 

hop is to consider, for each possible pair of tasks, each 

possible pair of machine assignments, while the other {&2 

assignments are unchanged. This is done for every possible 

pair of tasks. The Pseudocode for the short hop procedure is 

given in Fig. 2.Let the tasks in the pair under consideration be 

denoted ti and tj in Fig. 2. (The machine assignments for the 

other {&2 tasks are held fixed.) The machines to which tasks 

ti and tj are remapped are mi and mj, respectively. For each 
possible pair of tasks, each possible pair of machine 

assignments is considered. Lines 1 through 4 set the boundary 

values of the different loops. Line 6 or 8 is where each new 

solution (mapping) is evaluated, and line 9 is where the new 

solution is considered for acceptance. Each of these new 
solutions is a short hop. If the new makespan is an 

improvement, the new solution is saved, replacing the current 

solution. (This is defined as a successful short hop.) When ti 

and tj represent the same task (ti=tj), a special case occurs  

(line 5). In these situations, all machines for that  one task are 
considered. 

A*: The final heuristic in the comparison study is the A* 

heuristic. A* has been applied to many other task allocation 

problems [9]. The technique used here is similar to [9]. A* is 

a search technique based on a +-ary tree, beginning at a root 
node that is a null solution. As the tree grows, nodes represent 

partial mappings (a subset of tasks is assigned to machines). 

The partial mapping (solution) of a child node has one more 

task mapped than the parent node. Call this additional task ta . 

Each parent node generates + children, one for each possible 
mapping of ta . After a parent node has done this, the parent 

node becomes inactive. To keep execution time of the 

heuristic tractable, there is a pruning process to limit the 

maximum number of active nodes in the tree at any one time 

(in this study, to 1024). Each node, n, has a cost function, f 
(n), associated with it. The cost function is an estimated lower 

bound on the makespan of the best solution that includes the 

partial solution represented by node n. Let g(n) represent the 

makespan of the task machine assignments in the partial 

solution of node n, i.e., g(n) is the maximum of the machine 
availability times (max0_ j<+ mat(mj)) based on the set of 

tasks that have been mapped to machines in node n's partial 

solution. Let h(n) be a lower-bound estimate on the difference 

between the makespan of node n's partial solution and the 

makespan for the best complete solution that includes node n's  
partial solution. Then, the cost function for node n is  

computed as f (n) =g(n)+h(n). (2) Therefore, f (n) represents 

the makespan of the partial solution of node n plus a lower-

bound estimate of the time to execute the rest of the 

(unmapped) tasks in the metatask (the set U).The function 
h(n) is defined in terms of two functions, h1 (n) and h2 (n), 

which are two different approaches to deriving a lower-bound 

estimate. Recall that M = [min0_ j<+ (ct (ti, mj)),  for each ti # 

U]. For node n let mmct (n) be the overall maximum element 

of M (i.e., the maximum minimum completion time). 
Intuitively, mmct (n) represents the best possible metatask 

makespan by making the typically  unrealistic assumption that 

each task in U can be assigned to the machine indicated in M 

without conflict.  

6. Implementation:  

A. User Interface:  

The user interface was implemented using the Java AWT and 

Java Swing API. The user can enter the following information 
for the jobs through the interface:  

1) Username – Name of the user submitting the job.  

2) Baud Rate – The network communication speed between 

the user and the resource.  

3) Maximum Simulation Time- Total time for which 
simulation has to be executed.  

4) Successive Experiment Delay- Time delay between 

successive experiments.  

5) Scheduling Strategy- No Optimization, Optimize Cost, 

Optimize Cost and Time, Optimize Cost Plus, Optimize time.  

6) Job Type-Loosely Coupled, Tightly Coupled, Workflow, 

Distributed-Pipelined  

7) Gridlet information- Parameters for creating gridlets, 

gridlet sizes, gridlet length, gridlet file size, grid let output 

size.  

8) Number of Gridlet- Number of jobs submitted by the user.  

9) Factor-Based or Value-Based- The Budget and Deadline 

constraints are either value- based or factor-based.  

10) Budget and Deadline- Economic constraint values for 

application scheduling.  

The main screen consists of the Add User, Remove User and 

User Properties buttons. The Add User button is used to add 

multiple users to the Global Grid. The Remove User button is 

used to remove users from the Global Grid. The User 

Properties button is used to view and modify the job 
information submitted by each user.  

7. Grid Environments:  

There are three local Grid environments GridEnv1, GridEnv2, 
GridEnv3 simulated using GridSim. Each GridSim 

environment has individual resources registered with the Grid 

Information Service (GIS). One of the most important 

implementation details of GridSim is that it can have only one 

GIS even though there are multiple GridSim Environments. 
All the resource has to be registered with this GIS. In our 

implementation of the 3 local environments, each one has 3  
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resources. Each resource is a cluster of machines each having 

1 or more Processing Elements (PEs) with fixed values of 

MIPS rating for each machine.  

GridSimEnv1: Env1_Resource_0, Env1_Resource_1, 
Env1_Resource_2.  

GridSimEnv2: Env2_Resource_0, Env2_Resource_1, 

Env2_Resource_2.  

GridSimEnv3: Env3_Resource_0, Env3_Resource_1, 

Env3_Resource_2.  

The Global Grid virtually encompasses the three local Grids  

and has access to all the resources through the common GIS. 

Each user created in the Global Grid spawns a new execution 

thread. The job (gridlet) creation for each user is performed 

concurrently by the thread. The simulation is initiated with the 

method call to “StartGridSimulation” in the GridSim package. 

The jobs are then concurrently brokered using the customized 
broker algorithm. The default broker algorithm of GridSim is  

not initiated.  

To summarize the findings of this section, for consistent ETC 

matrices, GA gave the best results, Minimum the second best, 

and MET gave the worst. When the ETC matrices were 
inconsistent, OLB provided the poorest mappings while the  

mappings from GA and A* performed the best. For the 

partially-consistent cases, A still gave the best results, 

followed closely by Minimum and A*, while MET had the 

slowest. All results were for metatasks with {=512 tasks 
executing on +=16 machines, averaged over 100 different 

trials. For the situations considered in this study, the relative 

performance of the map-ping heuristics varied based on the 

characteristics of the HC environments. The GA always gave 

the best performance. If mapper execution time is also 
considered, 

Minimum gave excellent performance (within 120 of the best) 

and had a very small execution time. The confidence intervals  

derived from the mappings for these two heuristics were 

among the best (smallest) of any of the 11 heuristics. GA was 
always within \90 of its mean and Minimum was always 

within \130 of the mean for all 12 cases. This means that, for 

any future metatask to be mapped, these two heuristics will 

generate a good make span (within the confidence interval) 

950 of the time. 

CONCLUSION 
Static mapping is useful in predictive analyses, impact studies, 

and post-mortem analyses. The goal of this study was to 
provide a basis for comparison and insights into 

circumstances when one static technique will out-perform 

another for 11 different heuristics. The characteristics of the 

ETC matrices used as input for the heuristics and the methods 

used to generate them were specified. The implementation of 
a collection of 11 heuristics from the literature was described. 

The results of the mapping heuristics were discussed, 

revealing the best heuristics to use in certain scenarios. For 

the situations, implementations, and parameter values used 

here, GA consistently gave the best results. The average 
performance of the relatively simple Minimum heuristic was  

always within 120 of the GA heuristic. 
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