
International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

1

Mapping of Independent Task Classes onto GRIDSIM

 G.Malathy Dr.A.Saradha
Assistant Professor CSE (Research Scholar), Assiosiate Professor - CSE,

 Velalar College of Engineering and Technology, Institute of Road and Transport Technology,

 Tamilnadu, India. Tamilnadu, India

ABSTRACT:

The motivation of Grid computing is to aggregate the power of

widely distributed resources, and provide non-trivial services

to users. To achieve this goal, an efficient Grid scheduling

System is an essential part of the Grid. Rather than covering

the whole Grid scheduling area, this survey provides a review
of the subject mainly from the perspective of scheduling

algorithms. In this review, the challenges for Grid scheduling

are identified. First, the architecture of components involved in

scheduling is briefly introduced to provide an intuitive image

of the Grid scheduling process. Then various Grid scheduling
algorithms are discussed from different points of view, such as

static vs. dynamic policies, objective functions, applications

models, adaptation, constraints, strategies dealing with

dynamic behavior of resources, and so on. Thus, in this paper,

the following definition for the term Grid adopted: “A type of
parallel and distributed system that enables the sharing,

selection, and aggregation of geographically distributed

autonomous and heterogeneous resources dynamically at

runtime depending on their availability, capability,

performance, cost, and users' quality-of-service requirements”.
To facilitate the discussion, the following frequently used

terms are defined: A task is an atomic unit to be scheduled by

the scheduler and assigned to a resource. The properties of a

task are parameters like CPU/memory requirement, deadline,

priority, etc. A job (or metatask, or application) is a set of
atomic tasks that will be carried out on a set of resources. Jobs

can have a recursive structure, meaning that jobs are composed

of sub-jobs and/or tasks, and sub-jobs can themselves be

decomposed further into atomic tasks. In this paper, the term

job, application and metatask are interchangeable. A resource
is something that is required to carry out an operation, for

example: a processor for data processing, a data storage device,

or a network link for data transporting. A site (or node) is an

autonomous entity composed of one or multiple resources. A

task scheduling is the mapping of tasks to a selected group of
resources which may be distributed in multiple administrative

domains.

Keywords: OLB, MET, Min_min, GA, Tabu, A*

INTRODUCTION

1. Mapping Independent Tasks
Mixed-machine heterogeneous computing (HC) environments

utilize a distributed suite of different high-performance
machines, interconnected with high-speed links, to perform

different computationally intensive applications that have

diverse computational requirements. HC environments are

well suited to meet the computational demands of large,

diverse groups of tasks. The problem of optimally mapping
(defined as matching and scheduling)these tasks onto the

machines of a distributed HC environment has been shown, in

general, to be NP-complete, requiring the development of

heuristic techniques. Selecting the best heuristic to use in a

given environment, however, remains a difficult problem,

because comparisons are often clouded by different

underlying assumptions in the original study of each
heuristic.Therefore, a collection of 11 heuristics from the

literature has been selected, adapted, implemented, and

analyzed under one set of common assumptions.It is assumed

that the heuristics derive a mapping statically (i.e., off-line). It

is also assumed that a metatask (i.e., a set of independent,
noncommunicating tasks) is being mapped and that the goal is

to minimize the total execution time of the metatask. The 11

heuristics examined are Opportunistic Load Balancing,

Minimum Execution Time, Minimum Completion Time,

Min_min, Max_min, Duplex, Genetic Algorithm, Simulated
Annealing, Genetic Simulated Annealing, Tabu, and A*. This

study provides one even basis for comparison and insights

into circumstances where one technique will out-perform

another. The evaluation procedure is specified, the heuristics

are defined, and then comparison results are discussed. It is
shown that for the cases studied here, the relatively simple

Min_min heuristic performs well in comparison to the other

techniques. The matching of tasks to machines and scheduling

the execution order of these tasks is referred to as mapping.

For these studies, let a metatask be defined as a collection of
independent tasks with no intertask data dependencies. The

mapping of the metatasks is being performed statically (i.e.,

off-line, or in a predictive manner). The goal of this mapping

is to minimize the total execution time of the metatask.

Composed of independent tasks occur in many situations. For
example, all of the jobs submitted to a supercomputer center

by different users would constitute a metatask. Another

example of a metatask would be a group of image processing

applications all operating on different images.

Static mapping is utilized in many different types of analyses
and environments.The most common use of static mapping is

for predictive analyses (e.g., to plan the work for the next day

and_or to meet a deadline). For example, assume a NASA

center knows it will have a 2-hour communication window

with a probe tomorrow. In those 2 hours, NASA center will
have to analyze the data the probe sends back and determine

if the probe needs to be adjusted before communications

blackout. Therefore, the NASA center will want to plan the

most efficient way to handle the data a priori and determine if

the deadline can be met. Another use of static map-ping is for
``what if '' simulation studies. For example, a system

administrator may need to justify the benefits of purchasing

another machine for an HC suite. Static mapping is also used

for post-mortem analyses. For example, a static mapper can

be used ex post facto to evaluate how well an on-line (i.e.,
dynamic) mapper is performing. Future high-powered

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

2

computational grids [6] will also be able to utilize static

mapping techniques to distribute resources and computational

power. The wide applicability of static mapping makes it an
important area for ongoing research.It is also assumed that

each machine executes a single task at a time (i.e., no mul-

titasking), in the order in which the tasks are assigned. The

size of the metatask (i.e., the number of tasks to execute), the

number of machines in the HC suite, are static and known
beforehand. This study provides one even basis for

comparison and insights into circum-stances where one

mapping technique will out-perform another. The evaluation

procedure is specified, the heuristics are defined, and then

comparison results are shown.

2. Simulation Model
The 11 static mapping heuristics were evaluated using

simulated execution times for an HC environment. Because
these are static heuristics, it is assumed that an accurate

estimate of the expected execution time for each task on each

machine is known prior to execution and contained within a

ETC (expected time to compute) matrix. The assumption that

these estimated expected execution times are known is
commonly made when studying mapping heuristics for HC

systems [9] Approaches for doing this estimation based on

task profiling and analytical benchmarking are discussed in

[2]. One row of the ETC matrix contains the estimated

execution times for a given task on each machine. Similarly,
one column of the ETC matrix consists of the estimated

execution times of a given machine for each task in the

metatask. Thus, for an arbitrary task ti and an arbitrary

machine mj , ETC(ti , mj) is the estimated execution time of ti

on mj .The ETC(ti , mj) entry could be assumed to include the
time to move the executables and data associated with task ti

from their known source to machine mj . For cases when it is

impossible to execute task ti on machine mj (e.g., if

specialized hardware is needed), the value of ETC(ti , mj) is

set to infinity. For the simulation studies, characteristics of the
ETC matrices were varied in an attempt to represent a range

of possible HC environments. The ETC matrices used were

generated using the following method. Initially, a {_1 baseline

column vector, B, of floating point values is created. Let ,b be

the upper bound of the range of possible values within the
baseline vector. The baseline column vector is generated by

repeatedly selecting a uniform random number, xi b # [1, ,b),

and letting B(i)=xi b for 0_i<{. Next, the rows of the ETC

matrix are constructed. Each element ETC(ti , mj) in row i of

the ETC matrix is created by taking the baseline value, B(i),
and multiplying it by a uniform random number, xi, jr , which

has an upper bound of ,r . This new random number, xi, jr #

[1, ,r), is called a row multiplier. One row requires + different

row multipliers, 0_j<+. Each row i of the ETC matrix can then

be described as ETC(ti , mj)=B(i)_xi, jr , for 0_j<+. (The
baseline column itself does not appear in the final ETC

matrix.) This process is repeated for each row until the {_+

ETC matrix is full. Therefore, any given value in the ETC

matrix is within the range [1, ,b_,r) [9].To evaluate the

heuristics for different mapping scenarios, the characteristics
of the ETC matrix were varied based on several different

methods from [4]. The amount of variance among the

execution times of tasks in the metatask for a given machine

is defined as task heterogeneity. Task heterogeneity was

varied by changing the upper bound of the random numbers
within the baseline column vector.

Fig1. Flow Diagram of Global Grid Simulation

3. Current Model
For a DC based IR-drop analysis, an estimated peak DC

current is often used when the circuit design is still

incomplete. In [8], this simple DC peak current model is

extended to an AC peak current model. Based on the
estimated average chip current and an average/peak current

factor, the current profile for a single clock cycle is

constructed. This current profile is then evenly distributed

across all power grid connections by dividing the chip -level

current by the number of power grid connections at each time
point in the clock cycle. This method results in a low, wide

current profile for each gate, and all gate currents are perfectly

synchronized. In an actual circuit, however, each gate

produces a much narrower and taller current pulse when

switched, For a 500MHz design, a typical gate produces a
current pulse 50ps wide, only a fraction of the 2ns pulse width

that will be generated in the above approach. Also, gate

currents are not synchronized, and switch at various times

during the clock cycle. Decoupling capacitance is much more

effective in supplying the needed charge for many short ,
asynchronous current spikes than for a set of slow,

synchronized current pulses. Thus, this simplified current

model can produce a significant error in power grid analysis.

An accurate model can be obtained by a fast transistor level

simulation of the circuit blocks using chip-level vectors,
monitoring the individual gate currents. Each gate can then be

modeled by a current source matching its observed profile.

However, this procedure is prohibitively expensive for very

large processors. More importantly, most power grid design is
performed before the circuit design is completed and

transistor level simulation can be performed. Once all circuit

designs are completed, only limited, small modifications can

be made to the power grid. Hence, there is a critical need for a

good early current model a model that not only matches the
total current profile at the chip-level, but matches also the

gate-level current profiles and mimics their random switching

behavior.

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

3

4. Grid Resistance Models
The parasitic inductances of the power grid in a package must

be extracted and modeled to study their effect on the power

grid voltage and resonance behavior. The major sources of

parasitic inductances in the package are the power planes, ball

arrays/bond wires, and package vias. A number of inductance
extraction tools and techniques [10] are available to extract

the model of the package power network. Defining ports for

the package network at each supply and ground input to the

package and at connection points to the die, the extracted

model can then be reduced to a compact n-port model. The n-
port model is a completely dense matrix which represents the

self and mutual inductances between port connections. The

parasitic resistances of the on-chip power and ground grid are

either extracted from the layout with a commercial extraction

tool or, in early phases, are determined directly from wire
sizes using sheet resistance. The n-port model of the package

and the RC elements of the on-chip power model are then

combined with the extracted decoupling capacitance models

and current source models. Finally, the combined power grid

network is simulated using the techniques

 5. Heuristic Descriptions
The definitions of the 11 static metatask mapping heuristics

are provided below. First, some preliminary terms must be
defined. Machine availability time, mat (mj), is the earliest

time machine mj can complete the execution of all the tasks

that have previously been assigned to it (based on the ETC

entries for those tasks). The completion time for a new task ti

on machine mj , ct(ti , mj), is the machine availability time for
mj plus the execution time of task ti on machine mj , i.e., ct(ti

, mj)=mat(mj)+ETC(ti , mj). The performance criterion used

to compare the results of the heuristics is the maximum value

of ct(ti , mj), for 0_i<{ and 0_j<+. The maxi-mum ct(ti , mj)

value, over 0_i<{ and 0_j<+, is the metatask execution time,
and is called the makespan [2]. Each heuristic is attempting to

minimize the makespan, i.e., finish execution of the metatask

as soon as possible. The descriptions below implicitly assume

that the machine availability times are updated after each task

is mapped. For heuristics where the tasks are considered in an
arbitrary order, the order in which the tasks appeared in the

ETC matrix was used. Most of the heuristics discussed here

had to be adapted for this problem domain. For many of the

heuristics, there are control parameters values and control

function specifications that can be selected for a given
implementation. For the studies here, such values and

specifications were selected based on experimentation and

information in the literature.

Simulated Annealing :

SA exploits an analogy between the way in which a metal

cools and freezes into a minimum energy crystalline structure

(the annealing process) and the search for a minimum in a

more general system. SA's major advantage over other

methods is an ability to avoid becoming trapped at local
minima. The annealing schedule, i.e., the temperature-

decreasing rate used in SA is an important factor, which

affects SA's rate of convergence. The algorithm employs a

random search, which not only accepts changes that decrease

objective function " f ", but also some changes that increase it.

If the generation function of the simulated annealing

algorithm is represented as:

(1)

Where Ti (k) is the temperature in dimension i at time k. The

generation probability will be represented by

(2)

(3)

It is straightforward to prove that an annealing schedule for

 (4)

Where bi > 0 is a constant parameter and k0 is a sufficiently
large constant to satisfy (4), if the generation functions in (1)

is adopted.

OLB: Opportunistic Load Balancing (OLB) assigns each task,

in arbitrary order, to the next machine that is expected to be

available, regardless of the task's expected execution time on
that machine [3]. The intuition behind OLB is to keep all

machines as busy as possible. One advantage of OLB is its

simplicity,but because OLB does not consider expected task

execution times, the mappings it finds can result in very poor

makespans.

MET: In contrast to OLB, Minimum Execution Time (MET)

assigns each task, in arbitrary order, to the machine with the

best expected execution time for that task, regardless of that

machine's availability [7]. The motivation behind MET is to

give each task to its best machine. This can cause a severe
load imbalance across machines. In general, this heuristic is

obviously not applicable to HC environments characterized by

consistent ETC matrices. MCT: Minimum Completion Time

(MCT) assigns each task, in arbitrary order, to the machine

with the minimum expected completion time for that task
[3].This causes some tasks to be assigned to machines that do

not have the minimum execution time for them. The intuition

behind MCT is to combine the benefits of OLB and MET,

while avoiding the circumstances in which OLB and MET

perform poorly.

Min_min: The Min_min heuristic begins with the set U of all

unmapped tasks. Then, the set of minimum completion times,

M=[min0_j<+ (ct(ti , mj)), for each ti # U], is found. Next, the

task with the overall minimum completion time from M is

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

4

selected and assigned to the corresponding machine (hence

the name Min_min). Last, the newly mapped task is removed

from U, and the process repeats until all tasks are mapped
(i.e., U is empty) [13]. Min_min is based on the minimum

completion time, as is MCT. However, Min_min considers all

unmapped tasks during each mapping decision and MCT only

considers one task at a time. Min_min maps the tasks in the

order that changes the machine availability status by the least
amount that any assignment could. Let ti be the first task

mapped by Min_min onto an empty system. The machine that

finishes ti the earliest, say mj, is also the machine that

executes ti the fastest. For every task that Min_min maps after

ti , the Min_min heuristic changes the availability status of mj
by the least possible amount for every assignment. Therefore,

the percentage of tasks assigned to their first choice (on the

basis of execution time) is likely to be higher for Min_min

than for Max_min (defined next). The expectation is that a

smaller makespan can be obtained if more tasks are assigned
to the machines that complete them the earliest and also

execute them the fastest. Max_min: The Max_min heuristic is

very similar to Min_min. The Max_min heuristic also begins

with the set U of all unmapped tasks. Then, the set of mini-

mum completion times, M, is found. Next, the task with the
overall maximum completion time from M is selected and

assigned to the corresponding machine (hence the name

Max_min). Last, the newly mapped task is removed from U,

and the process repeats until all tasks are mapped (i.e., U is

empty) [3].Intuitively, Maximum attempts to minimize the
penalties incurred from performing tasks with longer

execution times. Assume, for example, that the metatask

being mapped has many tasks with very short execution times

and one task with a very long execution time. Mapping the

task with the longer execution time to its best machine first
allows this task to be executed concurrently with the

remaining tasks (with shorter execution times). For this case,

this would be a better mapping than a Minmin mapping,

where all of the shorter tasks would execute first, and then the

longer running task would execute while several machines sit
idle. Thus, in cases similar to this example, the Max_min

heuristic may give a mapping with a more balanced load

across machines and a better makespan.Duplex: The Duplex

heuristic is literally a combination of the Min_min and

Max_min heuristics. The Duplex heuristic performs both of
the Min_min and Max_min heuristics and then uses the better

solution [3]. Duplex can be per-formed to exploit the

conditions in which either Min_min or Max_min performs

well, with negligible overhead.

GA: Genetic Algorithms (GAs) are a technique used for
searching large solution spaces [2]. The version of the

heuristic used for this study was adapted from [4] for this

particular problem domain. Figure 1 shows the steps in a

general GA.The GA implemented here operates on a

population of 200 chromosomes (possible mappings) for a
given metatask. Each chromosome is a {_1 vector, where

position i (0_i<{) represents task ti , and the entry in position i

is the machine to which the task has been mapped. The initial

population is generated using two methods :(a) 200 randomly

generated chromosomes from a uniform distribution, or (b)
one chromosome that is the Min_min solution (i.e., mapping

for the metatask) and 199 random solutions. The latter method

is called seeding the population with a Min_min chromosome.

The GA actually executes eight times (four times with initial

populations from each method), and the best of the eight
mappings is used as the final solution. Each chromosome has

a fitness value, which is the makespan that results from the

matching of tasks to machines within that chromosome. After

the generation of the initial population, all of the

chromosomes in the population are evaluated based on their

fitness value, with a smaller fitness value being a better
mapping. Then, the main loop in Fig. 1 is entered and a rank-

based roulette wheel scheme [11] is used for selection. This

scheme probabilistically duplicates some chromosomes and

deletes others, where better mappings have a higher

probability of being duplicated in the next generation. Elitism,
the property of guaranteeing the best solution remains in the

population [3], was also implemented. The population size

stays fixed at 200.Next, the crossover operation selects a

random pair of chromosomes and chooses a random point in

the first chromosome. For the sections of both chromosomes
from that point to the end of each chromosome, crossover

exchanges machine assignments between corresponding tasks.

Every chromosome is considered for crossover with a

probability of 600. After crossover, the mutation operation is

performed. Mutation randomly selects a chromosome, then
randomly selects a task within the chromosome, and randomly

reassigns it to a new machine. Every chromosome is

considered for mutation with a probability of 400. For both

crossover and mutation, the random operations select values

from a uniform distribution. Finally , the chromosomes from
this modified population are evaluated again. This completes

one iteration of the GA. The GA stops when any one of three

conditions are met: (a) 1000 total iterations, (b) no change in

the elite chromosome for 150 iterations, or (c) all

chromosomes converge to the same mapping. Until the
stopping criterium is met, the loop repeats, beginning with the

selection step. The stopping criterium that usually occurred in

testing was no change in the elite chromosome in 150

iterations. A: Simulated Annealing (SA) is an iterative

technique that considers only one possible solution (mapping)
for each metatask at a time. This solution uses the same

representation as the chromosome for the GA. The initial

implementation of SA was evaluated and then modified and

refined to give a better final version. Both the initial and final

implementations are described below. SA uses a procedure
that probabilistically allows poorer solutions to be accepted to

attempt to obtain a better search of the solution space

[10].This probability is based on a system temperature that

decreases for each iteration. As the system temperature

``cools,'' it is more difficult for poorer solutions to be
accepted. The initial system temperature is the makespan of

the initial (random) mapping. The initial SA procedure

implemented here is as follows. The first mapping is

generated from a uniform random distribution. The mapping

is mutated in the same manner as the GA, and the new
makespan is evaluated. The decision algorithm for accepting

or rejecting the new mapping is based on [10]. If the new

makespan is better, the new mapping replaces the old one. If

the new makespan worse (larger), a uniform random number z

[0, 1) is selected. Then, z is compared with y, where y=11+e
(old makespan-new makespan temperature). If z>y the new

(poorer) mapping is accepted; otherwise it is rejected, and the

old mapping is kept. GSA: The Genetic Simulated Annealing

(GSA) heuristic is a combination of the GA and SA

techniques . In general, GSA follows procedures similar tothe
GA outlined above. However, for the selection process, GSA

uses the SA cooling schedule and system temperature and a

simplified SA decision process for accepting or rejecting a

new chromosome. Specifically, the initial system temperature

was set to the average makespan of the initial population and
reduced to 900 of its current value for each iteration.

Whenever a mutation or crossover occurs, the new

chromosome is compared with the corresponding original

chromosome. If the new makespan is less than the original

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

5

makespan plus the system temperature, then the new

chromosome is accepted [7]. Otherwise, the original

chromosome survives to the next iteration. Therefore, as the
system temperature decreases, it is again more difficult for

poorer solutions to be accepted. The two stopping criteria

used were either (a) no change in the elite chromosome in 150

iterations or (b) 1000 total iterations. The most common

stopping criteria was no change in the elite chromosome in
150 iterations.

Tabu: Tabu search is a solution space search that keeps track

of the regionsof the solution space which have already been

searched so as not to repeat a search near these areas [12]. A

solution (mapping) uses the same representation as a
chromosome in the GA approach.The implementation of Tabu

search used here begins with a random mapping as the initial

solution, generated from a uniform distribution. To

manipulate the current solution and move through the solution

space, a short hop is performed. The intuitive purpose of a
short hop is to find the nearest local minimum solution within

the solution space. The basic procedure for performing a short

hop is to consider, for each possible pair of tasks, each

possible pair of machine assignments, while the other {&2

assignments are unchanged. This is done for every possible

pair of tasks. The Pseudocode for the short hop procedure is

given in Fig. 2.Let the tasks in the pair under consideration be

denoted ti and tj in Fig. 2. (The machine assignments for the

other {&2 tasks are held fixed.) The machines to which tasks

ti and tj are remapped are mi and mj, respectively. For each
possible pair of tasks, each possible pair of machine

assignments is considered. Lines 1 through 4 set the boundary

values of the different loops. Line 6 or 8 is where each new

solution (mapping) is evaluated, and line 9 is where the new

solution is considered for acceptance. Each of these new
solutions is a short hop. If the new makespan is an

improvement, the new solution is saved, replacing the current

solution. (This is defined as a successful short hop.) When ti

and tj represent the same task (ti=tj), a special case occurs

(line 5). In these situations, all machines for that one task are
considered.

A*: The final heuristic in the comparison study is the A*

heuristic. A* has been applied to many other task allocation

problems [9]. The technique used here is similar to [9]. A* is

a search technique based on a +-ary tree, beginning at a root
node that is a null solution. As the tree grows, nodes represent

partial mappings (a subset of tasks is assigned to machines).

The partial mapping (solution) of a child node has one more

task mapped than the parent node. Call this additional task ta .

Each parent node generates + children, one for each possible
mapping of ta . After a parent node has done this, the parent

node becomes inactive. To keep execution time of the

heuristic tractable, there is a pruning process to limit the

maximum number of active nodes in the tree at any one time

(in this study, to 1024). Each node, n, has a cost function, f
(n), associated with it. The cost function is an estimated lower

bound on the makespan of the best solution that includes the

partial solution represented by node n. Let g(n) represent the

makespan of the task machine assignments in the partial

solution of node n, i.e., g(n) is the maximum of the machine
availability times (max0_ j<+ mat(mj)) based on the set of

tasks that have been mapped to machines in node n's partial

solution. Let h(n) be a lower-bound estimate on the difference

between the makespan of node n's partial solution and the

makespan for the best complete solution that includes node n's
partial solution. Then, the cost function for node n is

computed as f (n) =g(n)+h(n). (2) Therefore, f (n) represents

the makespan of the partial solution of node n plus a lower-

bound estimate of the time to execute the rest of the

(unmapped) tasks in the metatask (the set U).The function
h(n) is defined in terms of two functions, h1 (n) and h2 (n),

which are two different approaches to deriving a lower-bound

estimate. Recall that M = [min0_ j<+ (ct (ti, mj)), for each ti #

U]. For node n let mmct (n) be the overall maximum element

of M (i.e., the maximum minimum completion time).
Intuitively, mmct (n) represents the best possible metatask

makespan by making the typically unrealistic assumption that

each task in U can be assigned to the machine indicated in M

without conflict.

6. Implementation:

A. User Interface:

The user interface was implemented using the Java AWT and

Java Swing API. The user can enter the following information
for the jobs through the interface:

1) Username – Name of the user submitting the job.

2) Baud Rate – The network communication speed between

the user and the resource.

3) Maximum Simulation Time- Total time for which
simulation has to be executed.

4) Successive Experiment Delay- Time delay between

successive experiments.

5) Scheduling Strategy- No Optimization, Optimize Cost,

Optimize Cost and Time, Optimize Cost Plus, Optimize time.

6) Job Type-Loosely Coupled, Tightly Coupled, Workflow,

Distributed-Pipelined

7) Gridlet information- Parameters for creating gridlets,

gridlet sizes, gridlet length, gridlet file size, grid let output

size.

8) Number of Gridlet- Number of jobs submitted by the user.

9) Factor-Based or Value-Based- The Budget and Deadline

constraints are either value- based or factor-based.

10) Budget and Deadline- Economic constraint values for

application scheduling.

The main screen consists of the Add User, Remove User and

User Properties buttons. The Add User button is used to add

multiple users to the Global Grid. The Remove User button is

used to remove users from the Global Grid. The User

Properties button is used to view and modify the job
information submitted by each user.

7. Grid Environments:

There are three local Grid environments GridEnv1, GridEnv2,
GridEnv3 simulated using GridSim. Each GridSim

environment has individual resources registered with the Grid

Information Service (GIS). One of the most important

implementation details of GridSim is that it can have only one

GIS even though there are multiple GridSim Environments.
All the resource has to be registered with this GIS. In our

implementation of the 3 local environments, each one has 3

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

6

Fig2 Main user window

Fig3 User Properties window

resources. Each resource is a cluster of machines each having

1 or more Processing Elements (PEs) with fixed values of

MIPS rating for each machine.

GridSimEnv1: Env1_Resource_0, Env1_Resource_1,
Env1_Resource_2.

GridSimEnv2: Env2_Resource_0, Env2_Resource_1,

Env2_Resource_2.

GridSimEnv3: Env3_Resource_0, Env3_Resource_1,

Env3_Resource_2.

The Global Grid virtually encompasses the three local Grids

and has access to all the resources through the common GIS.

Each user created in the Global Grid spawns a new execution

thread. The job (gridlet) creation for each user is performed

concurrently by the thread. The simulation is initiated with the

method call to “StartGridSimulation” in the GridSim package.

The jobs are then concurrently brokered using the customized
broker algorithm. The default broker algorithm of GridSim is

not initiated.

To summarize the findings of this section, for consistent ETC

matrices, GA gave the best results, Minimum the second best,

and MET gave the worst. When the ETC matrices were
inconsistent, OLB provided the poorest mappings while the

mappings from GA and A* performed the best. For the

partially-consistent cases, A still gave the best results,

followed closely by Minimum and A*, while MET had the

slowest. All results were for metatasks with {=512 tasks
executing on +=16 machines, averaged over 100 different

trials. For the situations considered in this study, the relative

performance of the map-ping heuristics varied based on the

characteristics of the HC environments. The GA always gave

the best performance. If mapper execution time is also
considered,

Minimum gave excellent performance (within 120 of the best)

and had a very small execution time. The confidence intervals

derived from the mappings for these two heuristics were

among the best (smallest) of any of the 11 heuristics. GA was
always within \90 of its mean and Minimum was always

within \130 of the mean for all 12 cases. This means that, for

any future metatask to be mapped, these two heuristics will

generate a good make span (within the confidence interval)

950 of the time.

CONCLUSION
Static mapping is useful in predictive analyses, impact studies,

and post-mortem analyses. The goal of this study was to
provide a basis for comparison and insights into

circumstances when one static technique will out-perform

another for 11 different heuristics. The characteristics of the

ETC matrices used as input for the heuristics and the methods

used to generate them were specified. The implementation of
a collection of 11 heuristics from the literature was described.

The results of the mapping heuristics were discussed,

revealing the best heuristics to use in certain scenarios. For

the situations, implementations, and parameter values used

here, GA consistently gave the best results. The average
performance of the relatively simple Minimum heuristic was

always within 120 of the GA heuristic.

REFERENCES
[1] Foster, I., Kesselman, C.: The Grid: Blueprint for a New

Computing Infrastructure Second edition, Morgan-

Kaufman, 2004.

[2] M. Baker, R. Buyya, D. Laforenza: Grids and Grid

technologies for wide-area distributed computing,
Sotware – Practice and Experience, 2002, John Wiley &

Sons, Ltd.

[3] M. Baker, R. Buyya and D. Laforenza, Grids and Grid

Technologies for Wide-area Distributed Computing, in J.

of Software-Practice & Experience, Vol. 32, No.15, pp:
1437-1466, December 2002.

[4] F. Berman, R. Wolski, S. Figueria, J. Schopf and G. Shao,

Application-Level Scheduling on Distributed

Heterogeneous Networks, in Proc. of the 1996

ACM/IEEE

Conference on Supercomputing, Article No: 39, Pittsburgh,

Pennsylvania USA, November 1996.

International Conference on Advanced Computer Technology (ICACT) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

7

[5] F. Berman, High-Performance Schedulers, chapter in The

Grid: Blueprint for a Future Computing Infrastructure,

edited by I. Foster and C. Kesselman, Morgan Kaufmann
Publishers, 1998.

[6] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M.

Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,

G. Shao, S. Smallen, N. Spring, A. Su and D.

Zagorodnov, Adaptive Computing on the Grid Using
AppLeS, in IEEE Trans. On Parallel and Distributed

Systems (TPDS), Vol.14, No.4, pp.369--382, 2003.

[7] F. Berman, High-Performance Schedulers, chapter in The

Grid: Blueprint for a Future Computing Infrastructure,

Morgan Kaufmann Publishers, 1998.

[8] J. Bester, I. Foster, C. Kesselman, J. Tedesco and S.

Tuecke, GASS: A Data Movement and Access Service

for Wide Area Computing Systems, in Proc. of the 6th

Workshop on I/O in Parallel and Distributed Systems,

pp.: 78-88, Atlanta, Georgia USA, May 1999.

[9] J Blythe, S Jain, E Deelman, Y Gil, K Vahi and A

Mandal,K Kennedy, Task Scheduling Strategies for

Workflow-based Applications in Grids, in Proc. Of

International Symposium on Cluster Computing and Grid

(CCGrid’05), pp.759-767,

Cardiff, UK, May 2005.

[10] R. Braun, H. Siegel, N. Beck, L. Boloni, M.

Maheswaran, A. Reuther, J. Robertson, M. Theys, B.

Yao, D. Hensgen and R. Freund, A Comparison of

Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed

Computing Systems, in J. of Parallel and Distributed

Computing, vol.61, No. 6, pp. 810-837, 2001.

[11] R. Buyya, J. Giddy, and D. Abramson, An Evaluation of

Economy-based Resource

Trading and Scheduling on Computational Power Grids for

Parameter Sweep Applications, in Proc. of the 2nd

International Workshop on Active Middleware Services

(AMS 2000), pp. 221-230, , Pittsburgh, USA, August

2000.

[12] R. Buyya and D. Abramson and J. Giddy and H.
Stockinger, Economic Models for Resource Management

and Scheduling in Grid Computing, in J. of Concurrency

and Computation: Practice and Experience, Volume 14,

Issue.13-15, pp. 1507-1542, Wiley Press, December

2002.

[13] R. Buyya, D. Abramson, and S. Venugopal, The Grid

Economy, in Proc. of the IEEE, Vol. 93, No. 3, pp. 698-

714, IEEE Press, New York, USA, March 2005.

[14] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd, Grid Flow:

Workflow Management for Grid Computing, in Proc. of
the 3rd International Symposium on Cluster Computing

and the Grid (CCGrid’03), pp.198-205, Tokyo, Japan,

May 2003.

Author Profile:
Malathy.G received B.E Degree in Computer Science and

Engineering in 1999 from Bharathiyar University, and the

M.E degree in Computer Science and Engineering from Anna

University, Cheenai in 2007.She is working as an Assistant
Professor(SG) in the department of CSE at Velalar College of

Engineering and Technology,Erode.Her area of interest

includes Database Systems. Computer Networks, Grid

Computing and Compiler Design.

Dr.Saradha Arumugam received B.E degree in Electronics
and Communication Engineering from Madurai Kamaraj

University, Tamilnadu, India in 1988 and M.E degree in

Computer Science Engineering from PSG College of

Technology, Coimbatore, Tamilnadu, India in 1993 and Ph.D

degree in Computer Science Engineering from Government
College of Technology, Coimbatore, Tamilnadu, India in

2005.

She is an Associate professor of Computer Science

Engineering at Institute of Road and Transport Technology,

Tamilnadu, India. Her Current research interests include
Pattern recognition, Semantic web technology, Web mining,

Information Security, Grid Computing and Bioinformatics.

