
Proceedings published by International Journal of Computer Applications® (IJCA)
 International Conference on Emerging Technology Trends (ICETT) 2011

32

Optimized Cloud Storage with High Throughput

Deduplication Approach

Y. V. Lokeshwari
PG Student Department of

Computer Science and
Engineering SSN College of
Engineering, Anna University

Chennai – 603110,
Tamil Nadu, India

B. Prabavathy Assistant

Professor Department of
Computer Science and

Engineering SSN College of
Engineering, Anna University

Chennai – 603110,
Tamil Nadu, India

Chitra Babu Professor and

Head Department of
Computer Science and

Engineering SSN College of
Engineering, Anna University

Chennai – 603110,
Tamil Nadu, India

ABSTRACT
Cloud computing has revolutionised e-commerce by facilitating
the consolidation of computing and storage resources. Many

organizations have set up private clouds as it results in better
utilization of resources. Private cloud storage can be built from
the unused resources to store the data that belongs to the
organization. Since private cloud storage has a limited amount
of hardware resources, they need to be optimally utilized to

accommodate maximum data. Deduplication is an effective
technique to optimize the utilization of storage space. Two
methods adopted for deduplication, namely, chunk level and file
level, are studied here. This paper discusses the implementation

of both these methods in cloud storage through a case study. The
present work also proposes a variation in file level deduplication
to further increase the throughput.

Keywords
Private cloud storage, duplicate detection methods,
deduplication, Eucalyptus, Gluster file system,

1. INTRODUCTION
Cloud computing enables the consumers to obtain computing
and storage resources as services over the internet. It provides
advantages such as consolidation of resources, elasticity,
scalability and pay per use business model. Cloud computing
has facilitated better utilization of available resources. It enables
organizations to set up a private cloud with unused commodity
machines.

Private cloud storage can be built by consolidating the storage
resources of an organization. This can be used for several
purposes. Backup workloads, both traditional and non-
traditional, can occupy the cloud storage. Traditional backup
workload consists of streams of data with large stretches of
repetition. In other words, there will be more locality of
reference among different streams of data. For example, the
arrangement of files in My Documents directory appear
approximately in the same order in different backups of the My
Documents directory on different days. Non-traditional backup
workload consists of individual files belonging to different users
with no locality of reference.

Private cloud storage needs to be better utilized as there is a
physical limitation on the storage space. Deduplication is an

effective technique for optimization of instances of data stored

in cloud storage [7]. Deduplication can be classified into chunk
level and file level deduplication. Chunk level deduplication
method enforces the storage of unique chunks by comparing
every incoming chunk for duplicate identification. This method

achieves better deduplication efficiency because it does exact
deduplication [1]. However, the throughput is low as it checks
every incoming chunk for duplication. File level deduplication
method enforces the chunks of similar files to be compared
against duplicates. Files with incremental changes are referred to
as similar files. This method achieves better throughput as it
compares every incoming chunk only with chunks of similar
files. However, the deduplication efficiency is comparatively

low as some duplicate chunks may be found across different
groups. Hence, this technique performs only approximate
deduplication.

This paper focuses on a specific use case for private cloud
storage, details of deduplication techniques with their
performance and suggests a variation in the index of file level
deduplication, which further improves the throughput. The paper
is organized as follows. Section 2 discusses the architecture of
various deduplication approaches. Section 3 explains the
experimental setup for optimized cloud storage in detail. Section

4 analyses the optimized cloud storage for different kinds of
workload. Section 5 proposes the architecture of the variation in
file level deduplication and discusses the results. Section 6
concludes and provides possible future directions.

2. APPROACHES FOR DEDUPLICATION
In order to better utilize the storage space, duplicates among the
files need to be identified. Every incoming file is either divided
into fixed or variable sized chunks [6]. As variable sized
chunking leads to better identification of duplicates, each
incoming file is divided into variable sized chunks. Based on
how the incoming chunk is checked against duplicates,
deduplication can be categorized into two types, namely, chunk
and file level.

2.1 Chunk level Deduplication
Whenever a data stream has to be written, every chunk in the

stream is checked for duplicates before writing. This is termed
as chunk level deduplication.

Proceedings published by International Journal of Computer Applications® (IJCA)

 International Conference on Emerging Technology Trends (ICETT) 2011

33

2.1.1 Data Domain Deduplication file System

(DDDFS)
DDDFS [4] is a file system which performs chunk level
deduplication. Figure 1 shows the architecture of DDDFS.

DDDFS supports multiple access protocols. Whenever a file to
be stored enters into the system, it is handled through one of the
standard interfaces such as Network File System (NFS),
Common Internet File System (CIFS) or Virtual Tape Library
(VTL) to a generic file service layer. File service layer manages
the metadata and forwards the file to the content store. Content
store divides the file into variable sized chunks. Secure Hash
Algorithm (SHA-1) [5] finds the hash value of each chunk. This

is termed as Chunk_ID. Content store also maintains the file
recipe to construct the file when it is read. File recipe contains
the sequence of Chunk_ID which constitutes that file. Each
chunk is checked for duplicates against a set of chunk indices
maintained at the chunk store. Chunk index is the metadata that
includes Chunk_ID and the location of actual chunks in storage.
Unique chunks will be compressed and stored in the container.
Container is the unit of storage. Container manager is

responsible for allocating, de-allocating, reading, writing and
reliably storing containers.

Fig. 1. Data Domain Deduplication File System

Architecture

Since every incoming chunk is checked for possible duplication,

only unique chunks occupy the cloud storage. Therefore, chunk
level deduplication has better deduplication efficiency.
However, as each incoming chunk is checked against a large list
of chunk indices, the number of disk I/O operations is large.
This has a significant impact on deduplication throughput.

Storage of traditional backup workload demands good

deduplication efficiency as it involves large data redundancy
among different workloads. Hence, this deduplication approach
is best suited for such workloads.

2.2 File Level Deduplication
Whenever a data stream has to be written, every chunk in the
stream is checked against the chunks of similar files. This is

termed as file level deduplication.

2.2.1 Extreme Binning: Scalable, parallel
deduplication approach
This approach provides a scalable solution with the division of
chunk index into two tiers namely Primary and Secondary index
[3]. In this approach, all the Chunk_IDs that constitute a file and
the minimum Chunk_ID among them are found. This minimum
Chunk_ID is termed as representative Chunk_ID. According to
Broder’s Theorem, two files are said to be nearly similar, when
the representative Chunk_IDs of both the files are same. Figure

2 depicts the structure of a two tier chunk index. Primary chunk

index consists of representative Chunk_ID, whole file hash and
the address of the secondary index or bin. Bin is made up of

three fields namely, Chunk_ID, chunk size and the storage
address of the chunk.

Whenever a file has to be backed up, it is chunked and both the
representative Chunk_ID and the hash value for the entire file
are found. Representative Chunk_ID is searched in the primary
index and if it is not present, the incoming file is considered as
new. Hence, a new bin is created and all Chunk_IDs, their
corresponding size and a pointer to the actual chunks are added

to the disk. Representative Chunk_ID, hash value of a new file
and the pointer to the newly created bin are added to the primary
index.

On the other hand, if representative Chunk_ID of the incoming
file is already present in the primary index but the hash value of
the whole file does not match, the incoming file can be
considered to be nearly similar to the one that is already on the
disk. Most of the chunks of this file will probably be available in
the disk. The corresponding bin is loaded into the RAM, from
the disk and it is searched for matching chunks of the incoming

file. If the Chunk_ID is not found in the bin, then the metadata
of the chunk is added to the bin and the corresponding chunk is
written to the disk. The whole file hash value is not modified in
the primary index and the updated bin is written back to the
disk. If the whole file hash value of the incoming file is found in
the primary index, then the incoming file is considered as a
duplicate. Hence, the bin need not be updated.

Since every incoming chunk is checked only against the indices
of similar files, this approach achieves better throughput
compared to the chunk level deduplication. Since non-traditional

backup workload demands better deduplication throughput, file
level deduplication approach is more suited in this case.

3. EXPERIMENTAL SETUP FOR

OPTIMIZED CLOUD STORAGE
Cloud storage is built with open source software such as

Eucalyptus Framework and Gluster file system. Both the chunk
and file level deduplication techniques are implemented. Cloud
storage has been tested for deduplication efficiency and
throughput using both the techniques. Testing has been

Proceedings published by International Journal of Computer Applications® (IJCA)

 International Conference on Emerging Technology Trends (ICETT) 2011

34

performed for the storage of files of different sizes. A case
study involving a university scenario has been studied and the
corresponding results are discussed.

Fig. 2. Structure of the primary index and the bins

3.1 Case Study
Students in a university have access to multiple computers in
different workplaces. For example, students working in

laboratory, dormitory and class room uses different computers.
Due to this, there may be several inconsistent copies of the same
data. After some time, inconsistencies among the files in
different workplaces lead to confusion. Hence, a new version of

the file cannot be created from the existing one. This demands
common online storage for the students of university. Private
cloud storage can be built from unused commodity machines
and can be utilized as a common storage to satisfy this demand.

In this scenario, every student can be provided a user-id to
access the common storage.

3.2 Cloud Test Bed
Figure 3 depicts the test bed of cloud storage which can be used
for online common storage. This storage needs to be better

utilized as there is a physical limitation on the storage size.
Hence, an optimization technique has been incorporated in this
to make this storage as an optimized one. An Optimized Cloud
Storage (OCS) is built with the following steps.

3.2.1. Setting up Private Cloud using Eucalyptus
EUCALYPTUS is an open source software framework for cloud
computing that implements Infrastructure as a service (IaaS) [8].
This provides the users an ability to run and control the entire set
of virtual machine instances [9] that are deployed across variety
of physical resources.

Eucalyptus consists of five entities namely Cloud Controller
(CLC), Cluster controller (CC), Storage controller (SC), Walrus

and Node controller (NC). The Cloud controller is in charge of
the entire cloud that manages the resource allocation and user
accounts. The Cluster controller performs per-cluster scheduling

Fig.3. Cloud Test Bed

and networking. The Storage controller provides block storage
services similar to Amazon’s Elastic Block Service (EBS) [12].
The Walrus allows the users to interact with cloud storage via
S3 interface or REST based tools similar to Amazon’s Simple
Storage Service (S3) [11]. The Walrus can store the data only
on the machine in which it is installed [2]. The Node controller
controls the hypervisor on each compute node and sets up the
virtual machines.

3.2.2. Consolidation of storage resources
As Eucalyptus can not consolidate the storage resources of the
commodity machines, a distributed file system has to be used for
consolidation. Hadoop Distributed File System (HDFS) is the
most common file system used in cloud applications. However,
this is designed to support parallel and data intensive
applications. Though this file system consolidates the storage
resources, it cannot be mounted on a single point. Further, it
does not provide any control to the user on the storage and

retrieval of the files.

Gluster File System is used to set up a high-availability storage
with many storage servers that use GlusterFS [14]. The client
system can access the storage in the same way as it accesses a
local file system. Gluster File System is used to combine the
storage resources of different machines. It allows the user to
mount the consolidated storage at a single mount point [15].
Further, it allows the user to control the storage and retrieval of
the files. Hence, Gluster file system has been chosen to

consolidate the storage resources.

One of the four machines is configured as CLC, CC, SC and

Walrus. Rest of the machines are configured as Node
controllers. Gluster File System is installed on the machines
which are part of the cloud to consolidate their storage
resources. This consolidated storage can be accessed from a
single mount point.

Eucalyptus is essentially a set of web services. When the user
makes a request for storage to the front-end web service, the

Proceedings published by International Journal of Computer Applications® (IJCA)

 International Conference on Emerging Technology Trends (ICETT) 2011

35

cloud controller forwards the request to Walrus. Walrus is
compatible with Amazon’s S3 which allows users to perform
PUT, GET, DELETE, and LIST operations on the data.

3.2.3. Interacting with Walrus and Modifying

Eucalyptus
Walrus allows the users to store persistent data organised as
buckets and objects [10]. Users may use third party tools to
interact with walrus. Third party tools for interacting with
Walrus are:

1. S3curl is a command line tool that is a wrapper around

curl [13].
2. S3cmd that allows easy command line access to

storage that supports the S3 API.

3. S3fs that allows users to access S3 buckets as local
directories.

Eucalyptus source code WalrusManager.java deals with the

bucket creation, deletion, listing, putObject and getObject
methods. Deduplication optimization technique can be
incorporated into the putObject and getObject methods to build
an optimized cloud storage.

4. PERFORMANCE STUDY
The cloud test bed has been used for testing the two
deduplication techniques for file sizes between 5 KB and 50 KB
with increments of 5 KB. The space saving ratio is termed as
deduplication efficiency and time saving ratio is termed as
deduplication throughput. There can be two kinds of data stream

for the common online storage. They are:

i. Data stream of students belonging to the same department
(Multiple users of same group)

ii. Data stream of students belonging to different departments
(Multiple users of different groups)

Figure 4 shows the variation of deduplication efficiency with
file size. The following inferences can be drawn from this
figure:

1. Data stream of multiple users belonging to the same

group takes less space compared to the one from
different groups when they get stored in the OCS with
chunk level technique. This is due to the fact that,
there may be possibilities of more duplicates among
the data stream of same group.

2. Storage of data stream of multiple users of different
group takes same space irrespective of the
deduplication technique used in the OCS.

3. Data stream of multiple users belonging to the same
group takes more space in OCS with file level
compared to OCS with chunk level. The reason being,
there may be possibilities of duplicates existing among
the bins in the case of file level deduplication, since it

performs only approximate deduplication.

Figure 5 shows the variation of deduplication throughput with
file size. The following observations can be made based on this:

Fig. 4. Deduplication Efficiency

Fig.5. Deduplication Throughput

1. Data stream of multiple users belonging to the same

group takes less time compared to the one from

different group when they are stored in the OCS with
chunk level technique. This is due to the fact that,
there may be possibilities of more duplicates among
the data stream of the same group. Hence, they need
not be saved in the storage.

2. Storage of data stream of multiple users belonging to
different group takes more time in OCS with chunk
level deduplication compared to its file level
counterpart.

3. Data stream of multiple users belonging to the same
group takes less time in OCS with file level
deduplication compared to the chunk level
counterpart. The reason for this is, that chunk index

Proceedings published by International Journal of Computer Applications® (IJCA)

 International Conference on Emerging Technology Trends (ICETT) 2011

36

entries compared against duplicates will be less in file
level compared to the chunk level deduplication.

It can be seen from the above case study that there are two
groups of data stream that can enter into the cloud storage.
When the data stream is identified based on the groups,
throughput can be further increased. The data presented in
Figure 5 shows that, throughput achieved through file level
deduplication is better compared to that of chunk level

deduplication. However, file level deduplication fails to group
the incoming data stream. Hence, the primary index of the file
level deduplication technique can be varied to achieve further
increased throughput.

5. VARIATION IN FILE LEVEL

DEDUPLICATION
Users who want to access the common storage are identified by
a unique user-id. Every file belonging to an individual user is
associated with the user-id. With this kind of arrangement, it is

possible to group the data stream. In file level deduplication,
there will be only one primary index for all incoming files.
Hence, files that belong to different groups spend more time in
checking the primary index unnecessarily. Thus, the structure of

primary index can be slightly varied to accommodate groups of
data streams. Figure 6 shows the varied structure of primary
index in the file level deduplication.

Figure 7 shows the graph that depicts deduplication throughput

for multiple users of same as well as different group for file
level and varied file level deduplication. From the graph, it is
clear that data stream of different group takes less time in OCS
with varied file level deduplication compared to OCS with file

level deduplication.

6. CONCLUSION AND FUTURE WORK
With the evolution of cloud computing, compute and storage
resources of commodity machines can be efficiently utilized.
This allows every organization to build its own private cloud for
a variety of purposes. In order to better utilize the limited
storage available in a private cloud, a suitable approach for
optimization has to be used. The detailed architecture of chunk
and file level deduplication techniques are discussed in the
present study. In addition, it presented a case study and analyzed
the performance of optimized cloud storage. Further, this paper
proposed a novel variation in the file level deduplication
technique and showed that this achieves better throughput.
Currently, optimized cloud storage has been tested only for text
files. In future, it can be further extended to support files of
other types.

Fig. 6. Varied structure of primary index

Proceedings published by International Journal of Computer Applications® (IJCA)

 International Conference on Emerging Technology Trends (ICETT) 2011

37

Fig.7 Deduplication Throughput for File level Vs Variation in File level Deduplication

7. REFERENCES
[1] Wei, J. Jiang, H. Zhou, K. and Feng, D. 2010. Mad2: A

scalable High-throughput exact deduplication approach for
network backup services, Mass Storage Systems and
Technologies, IEEE / NASA Goddard Conference on, 0:1–
14.

[2] Abe, Y. and Gibson, G. 2010 pwalrus: Towards better
integration of parallel file systems into cloud storage. In
Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS), IEEE International Conference, pp. 1 –7.

[3] Bhagwat, D., Eshghi, K., Long, D. D. E., and Lillibridge,
M. 2009. Extreme binning: Scalable, parallel deduplication
for chunk-based file backup.

[4] Zhu, B., Li, K., and Patterson, H. 2008. Avoiding the disk
bottleneck in the data domain deduplication file system. In
Proceedings of the 6th USENIX Conference on File and

Storage Technologies, FAST’08, Berkeley, CA, USA.
USENIX Association, pp. 18:1–18:14,

[5] Stallings, W. 2002 Cryptography and Network Security,
Principles and Practice, Pearson Education, 3rd edition.

[6] Policroniades, C. and Pratt, I. 2004. Alternatives for

detecting redundancy in storage systems data, ATEC ’04:
Proceedings of the annual conference on USENIX Annual
Technical Conference, pp. 1-15.

[7] Zeng W, Zhao Y, Ou K and Song W, 2009, Research on
cloud storage architecture and key technologies, ICIS ’09:

 Proceedings of the second International Conference on
Interaction Sciences, pp.1044-1048.

[8] Open Source Eucalyptus manual. Eucalyptus Installation
[Online]Available:
http://open.eucalyptus.com/wiki/EucalyptusInstall_v2.0.

[9] Amazon’s Elastic Compute Cloud. Elastic Compute Cloud,
[Online] Available : http://aws.amazon.com/ec2/.

[10] Open Source Eucalyptus manual. Interacting with Walrus,
[Online] Available
:http://open.eucalyptus.com/wiki/EucalyptusWalrusInteracti
ng_v2.0.

[11] Amazon’s Simple Storage Service. Simple Storage Service,
[Online] Available : http://aws.amazon.com/s3/.

[12] Amazon’s Elastic Block Storage. Elastic Block Storage,
[Online] Available : http://aws.amazon.com/ebs/.

[13] Open Source Eucalyptus manual. Third Party tool to
interact with walrus, [Online] Available
:http://open.eucalyptus.com/wiki/EucalyptusWalrusS3Curl_v
2.0.

[14] Gluster file system. http://www.gluster.org.

[15] Gluster file system documentation.
http://gluster.com/community/documentation/index.php/Mai
nPa ge

http://open.eucalyptus.com/wiki/EucalyptusInstall_v2.0
http://aws.amazon.com/ec2/
http://open.eucalyptus.com/wiki/EucalyptusWalrusInteracti
http://aws.amazon.com/s3/
http://aws.amazon.com/ebs/
http://open.eucalyptus.com/wiki/EucalyptusWalrusS3Curl_
http://www.gluster.org/
http://gluster.com/community/documentation/index.php/

