
 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

17

Ad hoc resource binding in MANETs

K.Ponmozhi,
Research Scholar of Mother Teresa Women’s

University

Dr. R.S. Rajesh,
Department of Computer science &

Engineering,

Manonmanium Sundaranar University,
Tirunelveli

ABSTRACT
Mobile ad hoc networks consisting of highly dynamic,
decentralized and self-organizing network of autonomous nodes,
which interact as peers have become popular, distributed
environments. The possible mobility of users, terminals, and
even service components requires solutions to handle properly
the links to the resources in response to the mobile entity
migration. Binding decisions may depend on dynamic

deployment condition and should be determined at service
provision time. In this paper we propose a framework to predict
the resource movement and the different types of binding,
policies to represent the ways to realize dynamic binding to

other equal resource.

General Terms
Mobile Ad hoc Networks, Resource sharing, Dynamic binding.

Keywords
Resource sharing, Resource binding, dynamic binding.

1. INTRODUCTION
A Mobile ad hoc network consists of wireless mobile nodes
dynamically forming a temporary network without the use of
existing network infrastructure or centralized server. In these
kinds of networks, the classical distinction between clients and

servers as far as physical devices are concerned is replaced by
the paradigm of co-operation between a large set of potentially
heterogeneous devices. The physical topology of any MANET is
in constant state of flux due to node’s mobility. Mobility

encourages the development and deployment of new classes of
information services that can take into account the relative
position of users, service components and available resources.
Thus, when a mobile entity changes its location, it is necessary

to adapt a suitable strategy to update its references to the needed
resource. A mobile entity could take the needed resources with
itself; or it could transform its references to resources in the
origin locality into remote resource references when re-

connected at the destination locality; or it could re-qualify its old
resource bindings to new suitable resources in the new hosting
locality. The choice of the most proper re-binding strategy
requires the visibility of the location of the mobile device and
the resources, and also depends on dynamic deployment
conditions, and therefore should be decided at service provision
time. Towards this in this paper we allow to specify the binding
strategies as high level policies, and they can be modified and

activated dynamically with no impact on the implementation of
service component.

The paper is organized as follows section 2 talks about the
resource binding, section 3 elaborates the architecture, section 4
concludes with future direction of study.

2. RESOURCE BINDING
A mobile application may employ various services some of
which may be used complementary where as others may exists
only locally. [12] Service provision in MANETs is opportunistic
There are no fixed, well-known service providers. Any node can

be a service provider for its own benefit and for as long as it
participates in the MANET, or as long as she desires to be a
service.

Thus binding of services to applications must be resolved
dynamically at runtime as the location of the user and other
context information cannot be known as a priori. Thus, dynamic
binding is necessary for runtime service composition, and in a
changing context. In case of a mobile node with no constraint
on its local resources and if it wants to work on a information
resource it can copy it and process independently, but if the node
is having a strict limitations on its local resources like memory,

it can copy it to the nearby node and make a remote reference to

it. In another case where an information service, different
versions of the same functionality is available depending upon

its locality then the middleware should connect to the apt
instance of the service in the case of node movement, which
expects a node to disconnect and rebind to a new service

instance. Therefore, a mobile node can refer to resources
through various types of binding. Below are the four types of
binding categories [1, 3], each of these type specifies how the

mobility of the node affects its bounded resources.

Resource movement strategy: This strategy transfers bounded
resources along with the node, e.g. internet connection along
with node with WiFi connectivity. This strategy requires the
handling of modifications of other possible client bindings to the
moved resources.

Copy movement strategy: This strategy copies /transfers
bounded resources along with the node e.g. copy of a map into
the rescue personnel’s node.

Remote reference: Rather than moving the resources, this

strategy modifies the node’s binding to refer to the resource
remotely. This requires communication with the remote
execution environment hosting the information resources. When
coping to the node is not possible we can store the information
to the nearby node which does not have any memory

restrictions.

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

18

Rebinding : This strategy binds the node to the equivalent
resources available in the new locality e.g. connecting to the
different instance of the info services.

Since the mobility of the nodes in MANET is a norm rather than

exception, and mobile applications require greater binding
flexibility than provided in the conventional approaches in
which developers hard code strategies into the service logic we
should consider binding of resources to the node dynamically to

accommodate different deployment scenarios.

In this paper we investigate the resource management for
MANETs, and identified challenges include a need to provide
support for identification of alternative resources and provision
to have dynamic binding to the resource. The requirements lead
us to the architecture presented below.

3. ARCHITECTURE
The Resource Manager simplifies the interaction between the
application core and complex services on mobile hosts as
illustrated in Fig.1. The programmer provides an interface that
the service must obey along with a set of policies that dictate the
manner in which services are chosen. Policies simply specify the
properties of a service that are of importance to the application,
e.g., spatiotemporal stability. These policies are specified as a
set of weights on all properties of a service. Once a service is
chosen, the connection between the application and the service

is maintained transparently until it is not required anymore. Note
that the middleware is free to choose more than one service to
fulfill the needs of a single interface specified by the
programmer. In the rare cases that an exception occurs, it is
propagated back to the client application. The net result is that

an application can interact with a changing set of mobile
services as if they were a single static service.
The proposed middleware facilitates any application to discover
service components, possibly negotiate service tailoring to fit

device characteristics, and the current execution context. We
facilitate dynamically program the binding strategies for the
application agents. This means biding strategies can be defined
and changed even at runtime without affecting the application

code.

We separate service logic from binding management so that the
developers can code, change and reuse service components &
Administrators can express binding strategies at a high level of
abstraction in terms of declarative policies. The separation of
concerns in the framework we propose is obtained via the
adoption of a policy based approach. Polices are rules governing
choices in the behavior of a system separated from the

components in charge of their interpretation [6]. We use XML to
specify the policies[14] and profiles. A policy in XML has the
Target section which describes the storage location, or the class,
whose method that has to be invoked. The Events section

describes a logical combination of events (e.g. time-based even,
context-based events) once that happen, triggers the enforcement
of the actions defined. The Action section describes the actions
to be enforced, once the conditions are satisfied. When applied

to binding decisions, the event clause captures a change relevant
to binding management that operations and the action clause
specifies the method that allows setting the type of binding
strategy to activate at the event’s occurrence. Policies can

express a relationship between a domain of subjects and a
domain of (target) managed resources. The subject of a policy
determines the entities, which are granted permissions to
perform actions on the target resources. Both subject and target

refer to objects that can be loaded by java class loader. E.g
policy specification

<?xml version=”1.0”?>

<policy1>
<target> ….</target>

<subject>…. </subject>
<event>…..</event>

<action>…..</action>
<condition>…</condition>

</policy1>

Context awareness – is the knowledge of application specific
attributes, such as preferences, level of trust, subscribed
services, and access device characteristics- and location
awareness – is the knowledge of the physical position of the user
or device connection to the network infrastructure. Available
resources depend on location information - are the
characteristics needed for this separation to be effective.

Applications…. Applications….

Resource Manager Resource Manager

Resource directory Profiles – device,

user, policy.
Resource directory Profiles – device,

user, policy.

Other Layers

Other Layers

Provider Node Requester Node

Fig 1. The General Architecture

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

19

To support dynamic binding, we use metadata. Meta-data
provide information about users, devices, and resources and
about the preferred binding strategies; middleware facilities
perform runtime binding management actions based on metadata
and context and location visibility. We use two types of
metadata profiles describe user requirements and resource

properties. In this section we describe our initial design of
Resource Manager (fig. 2.) and the interaction among its sub-
components. We assume the existence of prediction module
which will predict the future location of the nodes and topology

information which has been elaborated in our earlier paper [13].

Components of Resource Manager

This is an interface between the application layer and the other
modules. It accepts resource request queries from the
application(s), and sends back the results to the application(s).

See Fig 2

Resource Directory

Below the Resource Manager is the traditional Resource
directory consists of local and network resource details. The
Resource directory is a repository for resource advertisements.
Each host has a local resource pool which is shared across hosts
within communication range. The Network resource pool is a
repository of knowledge that is provided by the local host or

obtained from other hosts via the communication layer. It should
be noted that any knowledge within the knowledge base is

shared freely with any other interested host in the MANET.

Local resource pool: Maintains the list of its own sharable
resources with the preference profiles of them. It also maintains
the status of them. When receives query from the resource
manager it check for the availability in the local pool, compare
with the profile and status then returns the resource descriptor-
an object with the same methods and constructors as that of the
requested resource - to the resource manager.

Application agent

Network resources Resource Manager

Profiles Local resource

pool

Resource Binder Resource allocation

table

Resource Prediction Policy Manager Tool

Retrieval Component

Enforcement Component

Fig 2. The Components of Resource manager

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

20

Network Resource Pool – such as the number of neighbors, the
distance between neighbors, and the preference profiles. Every

node has to maintain the list of nodes that can share their
resources, with their descriptions [2]. It maintains a table for
each kind of resource and list of nodes that has the resource and
the statistics about the nodes. Whenever a request is received by
this module it checks and returns the node_id. Now the resource
manager has to make a request to the node for its confirmation

of availability if the time of beacon packet stored is grater than
the specified time interval. - Which is not shown in the diagram
– for details refer [10].

Resource availability / prediction: In MANET scenarios,
peers have to exchange information needed to carry out assigned
works. Such an exchange can occur only if peers are connected
and also they are in the network. In these cases if the two nodes
are going to disconnect the assigned work could be terminated
leading to a situation of stalling in the application/ system.
Bridging/alternate actions has to be taken to avoid these
situations and to support for time planed execution of a process.
In choosing a bridge / alternative resource the context and the

availability, the resource description etc. has to be considered.
This module will trigger resource discovery when the resource
this node refers to is moving. Once the resource manager
identifies a resource to bind, that information will be passed on
to the binder module.

The smooth running can be ensured by reselecting new
resources to replace if the already assigned resource is no longer
available resources. Each node will have separate component
for dynamic resource management.

The alternate resource identification will be initiated in one of

the following

 By the node using the resource (client node mobility)

 By the node providing the resource (serve mobility)

Server node mobility

Phase I

 When the server node detects that the node it
services has not sent any hello packet for a
threshold period of time it sends a warning
packet & wait for ($) time

 If it is not receiving any acknowledgement, it
changes the status to “available” in the resource
allocation table for all the resources it has

allocated for that node.

 Sends this de allocation message back to the
client

Phase II

 In the case of its movement the server send all
the nodes to whom it serves a packet of “de
allocation”

 The clients will initiate the resource searching

Client node mobility

 Prepares the list of resources from other
nodes from the network allocation table

 Check the RDF of the resource

If it can be copied,

 Check the client nodes status

 Check the WSDL provided by the server
node

 Get the copy of the resource

 Change the applications reference to the new
instance of the resource

If the resource cannot be copied

 Check for equivalence in the network
resource table

 When the equivalence is found

 Send request query for the needed resource,
if the requesting node is ready to serve it will

send the profiles to the requester

 If the resource can be allocated the new

resource can be bound to the application

 The reference to the previous resource can
be changed and made it to refer to the new
resource.

b. Resource Binder

We need supporting facilities for adaptive binding to resources.

This module is responsible for managing the binding. We had
one resource table for an application. Resource table records the
list of resources used by the application.

Reference object implements binding mechanism accordingly to
the required resource binding strategies. When the strategy to be
applied is remote reference the reference object uses RMI to
refer to the resource. Where as, if the strategy is copy movement
then the object uses serialization mechanism to convert the
objects and transmits them. In the other end, it will be de
serialized and stored in the resource table. In the case of

resource movement Applications which are using this resource
will be informed – this information is available in the resource
pool - .

In the case of rebinding the binder searches the availability of
the resources in the network, by sending information to the
network resource module. With the availability of this node-id
the resource manager will ask for the confirmation from the
node’s local pool and make the binding. The information in the

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

21

resource table will also be altered based on this – details can be
found in paper [10].

Binding decision is done once in every context/topology change
triggered by the prediction module. We use obligation policies
which represents the action to be taken when a particular
condition/event occurs. Events are related to generic changes in
the system and can model any variation in the environment
state.(i.e) changes in the binding strategies can be triggered by
variations in user/device location, by resource method
invocation. Binding policies define the circumstances that
trigger a binding change, a new type of binding to exploit and

dynamic conditions that must hold in the deployment for
resource binding to take place. Binder is responsible for
managing the bindings; policy-enforcer enables the binder to
perform the low-level operations according to the desired
binding strategies.

In this section we focus on the idea behind the binding of
resources dynamically. We permit the designer to provide the

default binding as declarative policies. The choice of proper

binding strategies depends on several factors like access-device
properties, runtime conditions, management requirements and
user preferences. To support dynamic binding we use two
categories of metadata. (i) Policies they are used to specify and
control choices in resource binding strategies. They represent
which binding strategy should be used and when. (ii) Profiles
describe the user requirements and resource properties. (iii)
Device profile specifies the access device’s hardware and
software characteristics. Resource profile describes resource
interfaces as well as the properties that could be useful for

binding decision such as whether the resource can be copied or
migrated. We use XML based standard formats for profile
representations.

At the first request the resource descriptor – an object that has
the same methods and constructor interface of the requested
resource- is issued. This can be requested using the resource.get

(resource_name) function. When the resource is identified from
the local pool the appropriate resource_id, & its descriptor is
issued. Afterwards the application can access these resources
directly by using the reference objects without the influence of
the binder. The default binding strategy for that resource is
identified by calling the function getpolicyprofile() method
which will return the policy file for this resource. The default
binding for the I/O resources are remoterefernce where as the

files can be specified as copy/ move type binding. For hardware
resources like printer or internet facility the binding will be
rebind. For the software services the default binding will remote
reference. policy_enforcer(resource_id, policy_filename). The
policy_filename is the metadata filename of the policy for this
resource. Which will be parsed by the parser and the values will
be supplied to the policy_enforcer. If it is the resource of other
user then the preference profiles of that resource will be parsed

and given to this policy_enforcer. Based on the parsed details
the policy_enforcer does the binding and adds them to the
resource table. It also instantiate one reference object for the
resource. The resources that are used by an application are
maintained in a table. Each entry in the resource table has
resource id, the resource name in use, its descriptor, binder
policy, reference object, the binding object encapsulates the low
level functions to be done for the current binding policy.

Node_id Application_id Resource

descriptor

Resource_id ref to binding

policy (object)

Reference object (URL address)

Fig 3. The structure of the resource table

For resources like I/O devices the binding to the devices will be
voided and new resource which is identified if any will be rebind
to the application. In the case of remote reference strategy, the
java RMI is used, to make remote reference. When ever the
device movement is identified, the Resource_Diconnect
(resource_id) will be issued the policy-enforcer checks for
possible policy to be enforced and if it is resource copy/move

strategies, the resource object is converted in to stream of bytes
& java serialization and de serialization mechanism is used, and

updates the resource table accordingly. The resource is passed as
a stream of bytes to the new execution environment and rebuild

through de serialization – these functions are encapsulated in the
binding policy objects- . Whenever we dynamically readjust the
binding due to node movement the binder updates the resource
table accordingly.

4. CONCLUSION & FUTURE WORK
The complexity of developing and deploying mobile
applications over the Internet dictates a separation of concerns
between resource-binding strategies and application logic

implementations. Only this clean isolation permits the necessary
flexibility and reusability of middleware and service

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

22

components. Novel and programmable middleware solutions,
integrated with different types of high-level metadata, can
provide management configurability while hiding low-level

mechanisms and implementation details from service developers
and system administrators.
In this paper we have used XML for Meta data representations.
XML parser is the required element that needs t be there in the

nodes along with the other java files. Sessions of the
applications are not taken into consideration now. The session
maintenance for the rebind able services may be implemented in
future. In the case of modifiable resources the conflict resolution

has to be devise.

5. REFERENCES

[1] A. Fuggetta, G.P. Picco, and G. Vigna, , 1998

“Understanding Code Mobility,” IEEE Trans. Software

Eng., vol. 24, no. 5, pp. 342–361
[2] G. Kiczales, J. Irwin, J. Laming, J. Loingtier, C. Lopes, C.

Maeda, and A. Mendhekar, 1996, “Aspect Oriented
programming”, In special issues in Object Oriented

programming Max Muewhaeuser (general editor) et. Al. in.

[3] L. Cardelli, “Mobile Computation,” 1997, Mobile Object
Systems: Towards the Programmable Internet”, LNCS
1222, J. Vitek and C. Tschudin, eds., Springer-Verlag, , pp.
3–6

[4] SUN Microsystems. 1998, Remote Method Invocation.

[5] W. Grosso, R. Eckstein(eds.), 2001, Java RMI, O’Reilly.

[6] M. Sloman, 1994, “Policy Driven Management For
Distributed Systems”, Journal of Network and Systems
Management, vol.2, No. 4, Plenum Press.

[7] P. Bellavista, A. Corradi, and C. Stefanelli, 2002, “The
Ubiquitous Provisioning of Internet Services to Portable
Devices,” IEEE Pervasive Computing, vol. 1, no. 3, pp.

81–87
[8] P. Bellavista, A. Corradi, and C. Stefanelli, 2001, “Mobile

Agent Middleware for Mobile Computing,” Computer, vol.
34, no. 3, pp. 73–81.

[9] World Wide Consortium, Composite
Capabilities/Preferences Profile,
http://www.w3.org/Mobile/ccpp.

[10] R.S. Rajesh and K. Ponmozhi 2009,“Applying p2p in
MANETs” in International Conference on control
,automation, communication and energy conservation, vol
1, pp 66-70.

[11] Ines Houidi, Wajdi Louati, , Djamal Zeghlache, Panagiotis
Papadimitriou and Laurent Mathy, 2010, “Adaptive Virtual
Network Provisioning” VISA , September 3, New Delhi,
India ACM 978-1-4503-0199-2/10/09, pp 41-48

[12] Christopher N. Ververidis and George C. Polyzos ,2008,
“Optimizations for Charged Service Provision in Mobile
Ad Hoc Networks” 978-1-4244-2100-8/08/$25.00 ©2008

IEEE awareness in to MANET” at the National
Conference on “Explorations & iNnovations In
Advanced Computing”, organized by Department of
Information Technology, National Engineering College,
Kovilpatti, India.

[14] David W Chadwick, Linying Su, Romain Laborde.
“Coordinating Access Control in Grid Services”
Concurrency and Computation: Practice and Experience,
Volume 20, Issue 9, Pages 1071-1094, 25 June 2008.

http://www.w3.org/Mobile/ccpp
http://www.w3.org/Mobile/ccpp

