
 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

1

A Broker-Based Architecture for Quality- Driven Web

Services Composition using a Hybrid Genetic Algorithm

Kavya Johny
Department of Computer

Science, Viswajyothi College
of Engineering and

Technology, Vazhakulam,

Kerala

ABSTRACT

Web services are popular framework for integrating distributed
applications and enterprise business processes by individual
service components. Several system issues must be considered
when integrating distributed Web services into a business
process. Web service composition consists of combining web
services to offer more complex services. The QoS driven broker

based architectures are used for the selection of web services
that satisfies the QoS requirements (QoS constraints) of
consumers. In the web service selection there might be some
web service implementations that are dependent on each other.
The web service selection will be better if we also consider
those constraints during web service selection. This paper
proposes a broker based architecture for quality based web
service composition that takes into account the mutual

constraints between the web service implementations.

General Terms

Web Services Composition, Web Service Selection, Genetic
Algorithms.

Keywords

Web Services, Quality of Service, Broker Based Architecture,
Hybrid Genetic Algorithm.

1. INTRODUCTION
Web services provide ready-to-use functionalities through fixed
interfaces for other applications by hiding the implementation
details and they are commonly used in real world applications.
There exist a huge number of web services that can handle
particular requests. With the increasing number of available web
services, maintaining these services and searching for the ones
that satisfy a given requirement has become an important
problem. In order to handle a complex request, a combination of

more than one service is required. This process of combining
web services to achieve complex tasks is called Web Service
Composition (WSC).

The Web service composition includes three steps: 1) composite
Web service specification, 2). selection of the component Web
services, and 3) execution of the composite Web services. The
Service providers provide web services with the QoS
specification. The consumers specify the service that is to be
served with their own QoS requirements.

Table 1 outlines some possible QWS metrics that consider

when discovering relevant services.

 Parameter Description

1 Response Time Time taken to send a request and

receive a response

2 Availability Number of services available

3 Throughput Total number of invocations for a

given period of time

4 Likelihood of

success

Number of response/number of

request messages

5 Reliability The number of error free messages

in total messages

6 Compliance The measure of ability of a Web

service to respond to Web Services

Interoperability (WS-I)Basic

Profile

7 Latency Time to process a given request

So the need to discover and select the appropriate web services
becomes more important during the second step of web services
composition. Web service consumers need tools to search for

suitable services. This poses challenges not only in discovery
mechanisms and guaranteeing high quality services.

The Quality assessment of web service is used for obtaining

high-quality results [1]. Web service QoS requirements affects
the performance of web services. Often, unresolved QoS issues
[2][3][4] cause critical transactional applications to suffer from
unacceptable levels of performance degradation.

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

2

Many researchers have studied on the adaptive and dynamic
service composition problem. Previously, a framework for
quality-driven web service composition [5] was proposed that
selects the web services based upon the QoS requirements of the
requestors. S.Majitha et al proposed a framework for reputation-

based semantic service discovery [6]. Diego and Maria [7]
proposed an extended Web service architecture to support QoS
management. There are many web service discovery models that
contain UDDI to accommodate the QoS information and a
management system to build and maintain service reputations
and a discovery agent to facilitate service discovery. Different
approaches various optimal web service selection problems have
been proposed in the previous years. There are many algorithms

for web service selection in which selection is referring to the
QoS requirements without considering the constraints between
them. The study on the optimal web service selection problem
with constraints remains open. Thus, genetic algorithms might
be efficient and effective for solving the problem. The hybrid
genetic algorithm performs a constrained web service selection
for the web services composition problem. This improves the
quality of solutions.

2. THE BROKER ARCHITECTURE

2.1 WF-Modeller
The First step is done by the WF-Modeller. The requestor inputs
a service description to the Broker referring to the required final
Web service [8]. The WF-Modeller returns a workflow as a
result. It returns a set of activities where each activity is
complemented by a set of semantic annotations, to describe its
functionalities and capabilities.

Fig 1: QoS Broker Architecture

2.2 WS-Locator
Based upon the workflow that has been generated, the WS-
Locator will identify one or more Web services for each WF

activity. It searches the UDDI registry to find similar web
services for each workflow activity. It exploits both UDDI
search functionality, and semantics annotations to perform the
assignment.

2.3 WS-Adaptor
The requestor specifies QoS requirements along with the
request. From the set of services for each workflow activity
obtained from the WS-Locator it will select the best web
services satisfying requestor's QoS constraints and preference
for every task to take part in the composition.

2.4 QoS Manager
The QoS property values provided by service providers are

finally verified by the QoS-Broker. The QoS-Manager will
refine these values in QoSDB according to the user feedbacks to
reflect more accurate values.

2.5 WSBPEL Generator.
This is the last step. The results returned by the QoS Adaptor are

translated into a WSBPEL document.

3. THE HYBRID GENETIC ALGORITHM

 CS25

 CS24 CSNk

 CS13 CS23

 CS12 CS22

 CS11 CS21 CSN1

Fig 2: Genetic Encoding

The Genetic algorithm works on a number of individuals which

are found to be feasible solutions. Each individual have a fitness
value which represents a measure of feasibility. Fig 2 shows the
genetic coding of web services where CSij represents concrete
web services. The hybrid genetic algorithm, an extended form of
normal genetic algorithms, provides an optimal web service
selection. There may be mutual constraints between some web
service implementations. The mutual constraints are dependency
constraints and conflict constraints. In the web service selection,
both dependency constraints and conflict constraints must be

considered. The hybrid genetic algorithm performs web service
composition considering both these constraints.

3.1 Dependency Constraint
For a web service, if an implementation is selected, then a
different implementation must be selected for another web
service. For instance, a travel booking web service can be built

by aggregating a flight booking web service, a car rental web
service, a travel insurance web service, an accommodation
booking web service, a payment web service, and an itinerary
planning Web service. When building a travel booking web

Concrete

services

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

3

service, if we select a particular travel insurance web service
that only accepts payments made by Master cards, then we must
select a payment web service that accepts Master cards. This
kind of constraints is called dependency constraint.

3.2 Conflict Constraint
The conflict constraint is, sometimes when an implementation
for one web service is selected, a set of implementations for
another web service must be excluded in the web services
composition. When building a travel booking web service, if we
select a particular flight booking web service implementation
that does not accept deposits made by Master cards, then we
must not select an implementation for the payment web service
that supports Master cards. This type of constraints is called

conflict constraint.

3.3 Local Optimizer
 The hybrid genetic algorithm [9] uses a local optimizer to
improve the individuals in the population and utilizes a
knowledge based crossover operator. The local optimizer is used
at the beginning of the genetic algorithm. The individuals in the
initial population are randomly generated at first, and at the end
of each generation the local optimizer is used to improve the
individuals in the population. The local optimizer maximizes the

overall QoS value and also minimizes the number of constraint
violations of an individual.

For each concrete web service of set of web services, it will
calculate the fitness value of the new web service selection plan.
It will check systematically all the concrete web services one by
one to see if there exists an alternative concrete web service that

gives the individual a better fitness value. If a better one exists
then it will replace the present one with the best web service.
Thus local optimizer optimizes individuals in a population.

3.4 Crossover Operation

p1 p2

 c1

Fig. 3 Crossover Operation

The Hybrid genetic algorithm optimizes individuals using local
optimizer and selects the best individuals to generate a new child
using crossover operator. There are two types of crossover
operators: one-point crossover and combining crossovers. The
combining crossover combines the two solutions as shown in
Fig 3. To generate c1, the crossover operator firstly identifies all

the concrete web services in parent p1 that do not violate any

constraints, and then copies them to child c1. The rest concrete
web service selections in c1 are copied from p2.

3.5 Mutation Operation
Mutation is also used to perform constraint less web service

composition as in Fig 4. Mutation is the process of selecting one
web service randomly and replacing it with a better one. There
are five kinds of mutation operators such as one-point mutation,
biased one-point mutation, K-means mutation, cluster addition
and cluster removal [10].

Fig. 4 Mutation Operation

The constraint violation is removed in such a way that, if the

current concrete web service selection violates any constraints,
we check through all the alternatives and select the alternative
that gives the best fitness value. If the current concrete web
service selection does not violate any constraint, then we check
the alternatives one by one in the decreasing order of their
weighted QoS value. We replace the current concrete web
service selection with the better alternative concrete web service
immediately. In order to improve the computation time of the

local Optimizer, we sort the concrete web services only once at
the beginning of the genetic algorithm.

Begin

Initialize population with random candidate solutions;
Optimize each individual with local optimizer
Evaluate each candidate with its fitness value.

 Repeat
 Select parents from the population;

Crossover is performed by randomly selecting the
atomic services without any constraints and generates a child
with those atomic services of parents.

Mutate the resulting children by selecting a web-
service and replace with another one.
 Evaluate the children.
 Replace the parents with the children if it provides
best fitness value.
 Select individuals for the next generation
 Until termination-condition is satisfied
End

4. CONCLUSION
With the emerging role of web services in business processes,
the requirement of composing and executing them has begun to
draw high attention, and today the need to find the optimal web
services composition for the business processes is a challenging
issue. This paper proposes the broker based architecture that
makes a quality driven web service composition considering

1 2 3 4 5

1 2 3 4 5

1 2

3 4 5 1

1

5 4 3 2

2 3 4 5

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

4

both the dependency and conflict constraints. The hybrid genetic
algorithm is scalable and its computation time does not change
significantly with the increase in the number of abstract web
services. This will provide a better web service selection for
each workflow activity and thereby provide an optimal web

service composition according to the user QoS requirements.

5. REFERENCES
[1] Eyhab Al-Masri and Qusay H. Mahmoud,”Toward

Quality Driven Web Service Discovery,” IEEE Comp-
uter Society, IT Pro May/June 2008.

[2] Daniel A. Menasce, “QoS Issues in Web services,”
IEEE Internet Computing, December 2002.

[3] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J.
Kalagnanam, and H. Chang, “QoS-aware middleware
for web services composition,” IEEE Transactions on
Software Engineering, vol. 30, no. 5, pp. 311–327, May
2004.

[4] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms

for web services selection with end-to-end QoS
constraints,” ACM Trans. on Web, vol. 1,no. 1, p. 6,
2007.

[5] S.M. Babamir, S. karimi and M.R. Shishehchi, “A
Broker-Based Architecture for Quality-Driven Web
Services Composition,” IEEE computational
Intelligence and software engineering (CISE),
International conference, December 2010.

[6] S. Majitha, A. Shaikhali, O Rana, and D. Walker.
“Reputation based semantic service Discovery,” In
Proc. Of the 13 th IEEE Intl Workshops on Enabling
Technologies Infrastructures for collaborative
Enterprises (WETICE), pp.297-302, Modena, Italy,

2004.
[7] D. Garcia and M. Toledo, “A web service Architecture

providing QoS Management”, Web Congress, LA-
Web '06. Fourth Latin American, pp.189-198, 2006.

[8] B. Carminati, E. Ferrari, P.C. K. Hung, “Web Service
Composition: A Security Perspective”, International
Workshop on Challenges in Web Information Retrieval
and Integration, Tokyo, Japan April 08-April 09.

[9] Maolin Tang and Lifeng Ai, “A Hybrid Genetic
Algorithm for the Optimal Constrained Web Service
Selection Problem in Web Service Composition”,
Evolutionary Computation (CEC), 2010 IEEE
Congress, July 2010.

[10] Petra Kudova ,” Clustering Genetic Algorithm”, 18th
International Workshop on Database and Expert Systems
Applications, 2007 IEEE

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5573635

