
 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

28

Load Balancing using Selection Method
Grid Environment

 R.Bindhuja G.Arul Dalton Dr.T.Jebarajan
The Rajaas Engineering College The Rajaas Engineering College Kings Engineering College

Vadakkangulam,
Tirunelveli Dist

Assistant Professor/CSE
Vadakkangulam, Tirunelveli Dist

Principal
chennai

Tamilnadu, India. Tamilnadu, India. Tamilnadu, India.

ABSTRACT
Load balancing involves assigning to each
processor, work proportional to its performance,
minimizing the execution time of the program. The
proposed methodology is designed for task graphs
that are dynamic in nature due to the presence of
conditional tasks and tasks whose execution times
are unpredictable but bounded. Three-phase
strategy as Equal Load Balancing, Dynamic Load
Balancing and Selection Method. In first phase,
task nodes are mapped to the processors. In second
phase, Dynamic Load Balancing is a runtime
scheduling algorithm that performs list scheduling
based on the actual dynamics of the schedule up to
the current time. In the third phase, selection
method or DLB/JR method is performed that some
critical nodes are identified and duplicated for
possible rescheduling at runtime, depending on the
code memory constraints of the processors. The
third technique provides better schedule length
compared to previous two techniques, which are
predominantly static in nature, with low overhead

and a complexity comparable with existing
techniques.

Keywords: Grid Computing, Dynamic task

scheduling, Dynamic Load Balancing, Job
replication.

1. INTRODUCTION
Variations in the available resources (e.g.,

computing power and bandwidth) may have a
dramatic impact on the runtimes of parallel
applications [12]. Over the years, much research
has been done on this subject in grid computing.

Dynamic Load Balancing (DLB) (e.g., [5], [6], [8]

and [9]) and job replication (JR). DLB adapts the
load on the different processors in proportion to the
expected processor speeds. JR makes a given
number of copies of each job, sends the copies and
the original job to different processors, and waits
until the first replication is finished. A comparison

of the performance of those three methods on a
heterogeneous globally distributed grid
environment has to the best of the authors
knowledge never been performed.

Each processor usually has its local memory for
code storage and execution. A macro data-flow
graph (Directed Acyclic Graph DAG) is used to
describe an application at a high level. Mapping
and scheduling of macro data-flow graphs is a
fundamental and challenging problem that is being

addressed by many researchers. The system model
for the synthesis of a macro data-flow graph uses a
high-level task graph and a processor model.
Among the above models, this work focuses on the
scheduling problem of task graphs having
conditional nodes and tasks with unpredictable
execution behavior on a set of homogeneous
processors. A conditional task graph (CTG) model
captures the control flow of an application, in

addition to the data flow. The outgoing edges
associated with a conditional node depict the
control behavior of task graph at that node. During
the execution of the task graph, one of the
conditional branches is selected for further
execution, depending on the condition evaluated at
that node.

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

29

The presence of conditional tasks and tasks with

unpredictable execution behavior changes the
dynamics of the task graph at runtime. Thus, the
initial assumptions by static schedulers about the
behavior of the tasks change during execution.

Hence, few processors may get relatively more free
time than others and have to wait for tasks to get
finished on other processors to start execution
again due to the precedence constraints. This leads
to load imbalances in task distribution, which may
not be handled by static schedulers. Alternatively,
online (dynamic) schedulers schedule tasks to
processors using the information available at

runtime. However, scheduling of parallel tasks
often results in considerable overheads at runtime.
To reduce the scheduling overhead, many low

the sum of the individual iteration times (ITs). Fig.

1 presents the situation for one iteration of a BSP

run in a grid environment. The fig. 1 shows that

each processor receives a job, and the IT is equal to
the maximum of the individual job times plus the
synchronization time (ST).

2.2 Dynamic Load Balancing
DLB starts with the execution of an iteration,
which does not differ from the common BSP
program explained above. However, at the end of
each iteration, the processors predict their
processing speed for the next iteration and select

one processor to be the DLB scheduler.

Processors

overhead techniques have been proposed for
dependent tasks.

2. RELATED WORK

2.1 Equal Load Balancing
ELB parallel programs have the property that the

problem can be divided into sub problems or jobs,
each of which can be solved or executed in roughly

1 2 3

A C

B

4

D

jobs

the same way.
Processors

1 2 3 4

D

N

Iterations

Time

Synchronization phase

Synchronization phase

Computation of optimal load

distribution

Rescheduling

A Load Load Load of load

C

Iteration time
B

Jobs

Fig. 2 Dynamic Load Balancing

After every N iterations, the processors send their

prediction to this scheduler. Subsequently, this

Time

Synchronization phase

Fig.1: Equal Load Balancing

processor calculates the “optimal” load distribution
given those predictions and sends relevant
information to each processor. The load

distribution is optimal when all processors finish

Each run consists of I iterations of P jobs, which

are distributed on P processors. Each processor
receives one job per iteration. Further, every run
contains I synchronization moments: after

computing the jobs, all the processors send their
data and wait for each others data before the next
iteration starts. In general, the runtime is equal to

their calculation exactly at the same time.
Therefore, it is “optimal” when the load assigned
to each processor is proportional to its predicted
processor speed. Finally, all processors redistribute
the load. Fig. 2 provides an overview of the
different steps within a DLB implementation on
four processors.

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

30

The runtime of a parallel application directly

depends on the overhead of DLB, and therefore, it
is better to increase the number of iterations
between two load balancing steps.

2.3 Job Replication
In an R-JR (Job Replication) run, R _ 1 exact
copies of each job have been created and have to
be executed, such that there exist R samples of

each job. Two copies of a job perform exactly the
same computations: the data sets, the parameters,
and the calculations are completely the same.

Processors

1 2 3 4

advance, and that the workload that will be

imposed on each application can be predicted
within a known bound. Such systems often have a
limited number of application configurations that
can be executed, sometimes referred to as system

modes.

Dynamic scheduling is widely employed in real-

time and distributed real-time computing systems.
In most real-time systems, especially distributed
systems, cost-effectiveness demands that the
computing system employ as much application-
specific knowledge about the application and its
execution environment as feasible. Much of this
knowledge can be best captured in the scheduling
discipline. This specification allows such

application-specific scheduling disciplines to be
implemented by a pluggable scheduler. An end-to-

A1 A2

fin

B1 B2
fin

end execution model is essential to achieving end-
to-end predictability of timeliness in a distributed

real-time computing system. This is especially
important in dynamically scheduled systems. The
end-to-end execution model may be provided

Iteration

C1

C2

fin

D1 B2

fin

according to a formal standard specification (as
herein), or as an ad hoc, custom-made creation by
multiple different applicationprogrammers.
Dynamic algorithms must be efficient; their

complexity directly affects overall system
performance.

Time

Synchronization phase

Fig. 3 Job Replication

3.2 GAUSSIAN ELIMINATION

APPLICATION

Gaussian Elimination application is a highly
communicating task graph. Since this project is
focused on highly communicating task graph. A

3. PRELIMINARIES
3.1 DYNAMIC TASK SCHEDULING

In real-time, we distinguish between two types of
distributed systems based on how the system is

used, and its impact on the underlying
infrastructure. Scheduling of real-time tasks in
multiprocessor systems is to determine when and
on which processor a given task executes. This can
be done either statically or dynamically.

Static distributed systems are those where the
processing load on the system is within known
bounds such that a priori analysis can be
performed. This means that the set of applications
that the system could be running is know in

task graph is generated for Gaussian Elimination
application and it is scheduled on cluster of
workstations. Gaussian Elimination is a method to
solve simultaneous linear equations of the form
[A][X]=[C]. The goal of forward elimination is to

transform the coefficient matrix into an upper
triangular matrix.

In Gaussian elimination application odd level
consists of single nodes. Even level consists of
nodes in decreasing order starting from the order of
the matrix. The total number of nodes in the m*m
matrix is calculated using the formula given below,

Total number of nodes = (m2 + 3m) / 2 For a 3*3
matrix, Total number of nodes=(32 + 3 * 3)/2=9

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

31

::

2 0
2 of as forming the vertices of a directed acyclic

3 3 graph while the graph’s directed edges show the
dependencies between operations. Operations may

1 1 6 2 9 3

1

be performed in parallel or serially, depending on
when inputs become available. The Task Graph
pattern addresses this problem.

8 4 2

2

3 7

2

3

5 6 8

2
1

8

Task Graph

Dynamic

task at

time tn

Global

Scheduler

using

Selection

method

P1

Local

Scheduler

Local

Dispatcher

CPU

Fig 4: A 3*3 Gaussian elimin4ation task graph

with assigned computation time and
communication time.

Profiler

A 3*3 Gaussian elimination matrix with P2

computation time and communication time is :

shown in Fig 4.

4. IMPLEMENTATION

4.1 DESIGN ARCHITECTURE

The fig. 5 shows how task is allocated, scheduled
to different processor in Grid system using
Selection method. Here Global scheduler accepts a
task graph as its input. A task graph defines the
number of tasks to be executed and also specifies
their execution time, arrival time, deadline, level
and criticality. The purpose of the global scheduler
is to allocate tasks to different processors in the

grid system.

Local scheduler is implemented to schedule the

tasks for each processor and also find average
utilization of each processor. When new task
arrives, the scheduler makes decision dynamically
by balancing the load of the processor. The new
task can be rescheduled with the tasks which are in
the waiting queue.

Many computational problems can be broken down
into a collection of independent operations.
Operations produce outputs that are used as inputs
to other operations. The operations can be thought

pn

Fig 5. System Architecture

4.2 SELECTION METHOD(DLB/JR)
In this of a method that selects between the above
two different types of implementations. This
method has the aim to select dynamically the
optimal implementation type. In this method, the
processor that redistributes the load in DLB is also

the processor that decides whether JR or DLB is
used. When the method decides that a switch to the
other type of implementation is necessary, the steps
to be taken are the same as in the DLB
rescheduling phase: 1) the nodes send their
prediction to the scheduler, 2) the scheduler
computes the optimal load distribution, and 3) the

nodes redistribute their load.

An online scheduler requires each node to be
mapped to every processor so that it can start a
node at any available processor at runtime. Thus,
the code memory requirement on each processor is
the sum of all the code sizes, which is not desirable
and may violate the storage memory constraints.
The selection method strategy tries meeting the
memory constraints on each processor by suitably

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

32

choosing nodes that are estimated to contribute
most to the performance improvement during an
online scheduling.

4.2.1 Dynamic Critical Path (DCP)

Algorithm
The proposed DCP algorithm have the following
features,

 It assigns dynamic priorities to the nodes at
each step based on the dynamic critical path
(defined below) so that the schedule length can be
reduced monotonically.

 It changes the schedule on each processor
dynamically in which the start times of the nodes
are not fixed until all nodes have been scheduled.

 It selects a suitable processor for a node by
looking ahead the potential start time of the node's
critical child node on that processor.

 It does not exhaustively examine all
processors for a node. Instead, it only considers the
processors that are holding the nodes that
communicate with this node.

 It schedules relatively unimportant nodes to
the processors already in use in order not to waste
processors.

The proposed Dynamic Critical Path(DCP)

algorithm have two phases namely node selection,
Processor Selection.

Pseudo code for node selection is shown
below

1. Find the greatest path in the static level
2. Form a series order of the path

Repeat :

3. Check whether all predecessor finished in the
path,

If not finished,
If have more than one path,

Then include in the path of order whose
execution time is more.

If exec time is same,
Then include in the path of any order.

4. If Predecessor finished, check if any parallel
task exist.
5. If so include in the path of order whose

execution time is more. Until all nodes are
scheduled in the DAG.
Exhaustively examining all the processors to

select a suitable one can be very time consuming

when the task graph is very large. Observe that the
start time of a node can only be reduced by

scheduling it to a processor which holds its parent

nodes. And, in order to reduce the start times of the
node's earlier scheduled children nodes, the
processors holding such children nodes are also
candidates for examination. Thus, the set of

processors to be examined can be restricted to
those holding the parent nodes and possibly
children nodes, together with a new processor.

The brief steps of the selection method
algorithm are mentioned next and will be described
later:

 Step 1. Construction of a

concurrency graph GC and a schedule graph GS.

The selection method algorithm first constructs two
types of graphs from the task graph and the
schedule generated namely, the concurrency graph
GC and the schedule graph GS. Fig 6 shows

Concurrency graph for a 3*3 Gaussian Elimination
graph shown in Fig 4.

V0

V2
V1

V5
V3

V4

V6

V7

V8

Fig 6: Concurrency Graph

These two graphs capture the possible
concurrent execution in the CTG and dependency
among the nodes in the schedule, respectively.

 Step 2. Elimination of unimportant

nodes from further consideration of replication
Using the above two graphs, identify certain nodes
whose replication in other processors are not
needed. These nodes are eliminated from further
consideration on their replication on any of the

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

33

other processors. We define three properties for the
above elimination procedure.

Property 1. If a task does not have any edge
in the concurrency graph, then it need not be
replicated to other processors.

Property 2. If a task vi has at most |PE|- 1
adjacent nodes in GC and each adjacent node has a

mapping in a different processor, then vi need not
be duplicated in any of the processors.

Property 3. If a node vi does not have any
adjacent node vj in GC such that the adjacent node

is mapped to the same processor, vi is eliminated
from the duplication list.

 Step 3. Weight calculation for each
node processor mapping .Each qualified node is
then considered for mapping on every processor.
We estimate the maximum possible start time gain

that a node vi can gain if it is mapped on a new

processor by using the MinMax algorithm. A
weight is assigned for each new task processor
mapping vector based on the start time gain and
SU of the node.

The MinMax algorithm for a schedule graph.
The MinMax algorithm calculates the minimum
Minvi and the maximum Maxvi possible start time

for nodes in a schedule graph.
 Step 4. Duplication set selection. In

this final step, a subset of the node processor
mapping vectors is selected for each processor so
as to maximize the sum of weights within the
available memory on each processor.

5. CONCLUSION
In this paper, we have made an extensive

assessment that are most suitable to make parallel
applications robust against the unpredictability of
the grid. The selection method presented provides a
powerful means to make parallel applications

robust in large scale grid environments.

6. REFERENCES
[1] I. Ahmad and Y.-K. Kwok, 1994 A New

Approach to Scheduling Parallel Programs
Using Task Duplication.

[2] H. Attiya, 2004 Two Phase Algorithm for

Load Balancing in Heterogeneous
Distributed Systems.

[3] Banicescu I and V. Velusamy, 2002 Load
Balancing Highly Irregular Computations
with the Adaptive Factoring.

[4] S. Darbha and D.P. Agrawal, 1998 Optimal

Scheduling Algorithm for Distributed
Memory Machines.

[5] A.M. Dobber, G.M. Koole, and R.D. van der

Mei, 2004 Dynamic Load Balancing for a
Grid Application.

[6] A.M. Dobber, G.M. Koole, and R.D. van der

Mei,2005 Dynamic Load Balancing
Experiments in a Grid.

[7] A.M. Dobber, R.D. van der Mei, and G.M.

Koole,2006 Effective Prediction of Job
Processing Times in a Large Scale Grid
Environment.

[8] A.M. Dobber, R.D. van der Mei, and G.M.

Koole,2007 A Prediction Method for Job
Running Times on Shared Processors.

[9] S. Darbha and D.P. Agrawal, 1998 Optimal

Scheduling Algorithm for Distributed
Memory Machines.

[10] A.M. Dobber, R.D. van der Mei, and G.M.

Koole, 2006 Statistical Properties of Task
Running Times in a Global Scale Grid

Environment.

[11] G.-L. Park, B. Shirazi, and J. Marquis, 1998

Mapping of Parallel Tasks to
Multiprocessors with Duplication.

