
 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

18

Solving Traveling Salesman Problem by

Modified Intelligent Water Drop Algorithm

R. Kesavamoorthy M.E.,
Assistant Professor, Faculty of

Information Technology,
P.S.R. Rengasamy College of

Engineering for Women,
Sivakasi, Tamilnadu, India

D.ArunShunmugam M.E.,
Assistant Professor, Faculty
of Computer Science and

Engineering,
P.S.R. Engineering College,
Sivakasi, Tamilnadu, India

L.ThangaMariappan M.E.
Assistant Professor, Faculty
of Computer Science and

Engineering,
V.S.B. Engineering College,

Karur, Tamilnadu, India

ABSTRACT
In this paper, a modification to the new problem solving

algorithm called “Intelligent Water Drops” or simply IWD
algorithm has been proposed. This algorithm is based on the
dynamic of river systems and the actions that water drops do in
the rivers. Based on the observation on the behavior of natural
water drops, artificial water drops are developed which
possesses some of the remarkable properties of the natural water
drops. These ideas are embedded into the proposed algorithm for
solving the Traveling Salesman Problem or the TSP. Here a

local Heuristic function has been added to the original IWD
algorithm, which measures the undesirability of an IWD to move
from one node to another. Also it is suggested that, after a few
number of iterations, the soils of all paths of the graph of the
given TSP are reinitialized again with the initial soil except the
paths of the total-best solution which are given less soil than
initial soil. The modified IWD algorithm finds better tours and
hopefully escapes local optimums.

Keywords
water drops; Traveling Salesman Problem; heuristic; tour; local
optimum;

1. INTRODUCTION

Scientists are beginning to realize more and more that nature is a
great source for inspiration in order to develop intelligent systems
and algorithms. In the field of computational Intelligence,
especially Evolutionary Computation and Swarm-based systems,
the degree of imitation from nature is surprisingly high and it
leads to the edge of developing and proposing new algorithms
and/or systems, which partially or fully follow nature and the
actions and reactions that happen in a specific natural system or
species.

Among the most recent nature-inspired swarm-based
optimization algorithms is the Intelligent Water Drops (IWD)

algorithm. IWD algorithm imitate some of the processes that
happen in nature between the water drops of a river and the soil
of the river bed. The IWD algorithm was first introduced in [1] in
which the IWDs are used to solve the TSP.

In the TSP, a map of cities is given to the salesman and he is
required to visit every city only once one after the other to
complete his tour and return to its first city. The goal in the TSP
is to find the tour with the minimum total length among all such
possible tours for the given map.

A TSP is represented by a graph (N, E) where the node set N
denotes the n cities of the TSP and the edge set E denotes the
edges between cities. Here, the graph of the TSP is considered a

complete graph. Thus, every city has a direct link to another city.
It is also assumed that the link between each two cities is
undirected. So, in summary, the graph of the TSP is a complete
undirected graph.

2. RELATED WORKS

One of the famous swarm-based optimization algorithms has
been invented by simulating the behavior of social ants in a

colony. Ants can find the shortest path from their nest to a food
source or vice versa with its own intelligence. Other social insects

generally show such complex and intelligent behaviors are bees
and termites. Ant Colony Optimization or ACO algorithm and

Bee Colony Optimization or BCO algorithm are among the
swarm-based algorithms imitating social insects for optimization.

Evolutionary Computation is another system, which has been
inspired from observing natural selection and reproduction
systems in nature. Genetic algorithms or GA are among the most
famous algorithms in this regard.

Artificial Immune Systems or simply AIS follow the processes
and actions that happen in the immune systems of vertebrates.
Clonal Selection Algorithms, Negative Selection Algorithms, and
Immune Network Algorithms are among the most common
techniques in the field of AIS.

Another swarm-based optimization algorithm is the Particle
Swarm Optimization. PSO uses a swarm of particles, which each
one has position and velocity vectors and they move near together

to find the optimal solution for a given problem. In fact, PSO
imitates the processes that exist in the flocks of birds or a school
of fish to find the optimal solution.

3. NATURAL WATER DROPS

Flowing water drops are observed mostly in rivers, which form
huge moving swarms. The paths that a natural river follows have
been created by a swarm of water drops. For a swarm of water

drops, the river in which they flow is the part of the environment
that has been dramatically changed by the swarm and will also be
changed in the future.

One of the attractive features of a water drop flowing in a river is
its velocity. It is assumed that each water drop of a river can also
carry an amount of soil. This soil is usually transferred from fast
parts of the path to the slow parts. As the fast parts get deeper by
being removed from soil, they can hold more volume of water
and thus may attract more water. The removed soils, which are
carried in the water drops, are unloaded in slower beds of the

river.

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

19

Assume an imaginary natural water drop is going to flow from
one point of a river to the next point in the front. Three obvious
changes such as an increase in the velocity and soil of the water

av

ΔvelIWD(t) = (2)
2α

drop and a decrease in the soil of the river’s bed between the two bv + cv. soil (i,j)

points will happen during this transition.

In fact, an amount of soil of the river’s bed is removed by the
water drop and this removed soil is added to the soil of the water
drop. Moreover, the speed of the water drop is increased during
the transition.

It was mentioned above that a water drop has also a velocity. This
velocity plays an important role in removing soil from the beds of

rivers. The following properties are assumed for a flowing water
drop:

1) A high speed water drop gathers more soil than a slower
water drop.

2) The velocity of a water drop increases more on a path with
low soil than a path with high soil.

3) A water drop prefers a path with less soil than a path with
more soil.

4. INTELLIGENT WATER DROPS
Based on the aforementioned statements, Intelligent Water Drops
were developed, which possesses a few remarkable properties of
a natural water drop. This Intelligent Water Drop, IWD for short,
has two important properties:

1) The soil it carries, denoted by soil(IWD).

2) The velocity that it posses, denoted by velocity(IWD).

For each IWD, the values of both properties, soil(IWD) and
velocity(IWD) may change as the IWD flows in its environment.
From the engineering point of view, an environment represents a
problem that is desired to be solved. A river of IWDs seeks an
optimal path for the given problem.

Each IWD is assumed to flow in its environment from a source to
a desired destination. In an environment, there are numerous
paths from a given source to a desired destination. The location of
the destination may be unknown. If the location of the desired
destination is known, the solution to the problem is obtained by
finding the best (often the shortest) path from the source to the
destination.

However, there are cases in which the destination is unknown. In
such cases, the solution is obtained by finding the optimum
destination in terms of cost or any other desired measure for the
given problem.

An IWD moves in discrete finite-length steps in its environment.
From its current location i to its next location j, the IWD velocity,

velocity (IWD), is increased by an amount Δvelocity(IWD),
which is nonlinearly proportional to the inverse of the soil
between the two locations i an j, soil(i,j)

Here, the, av, bv, cv and α are user-selected positive parameters.

Moreover, the IWD’s soil, soil(IWD), is increased by removing
some soil of the path joining the two locations i an j. The amount
of soil added to the IWD, Δsoil(IWD)= Δsoil(i,j), is inversely
(and nonlinearly) proportional to the time needed for the IWD to
pass from its current location to the next location denoted by
time(i,j; IWD).

1

Δsoil(IWD) = Δsoil(i,j) ∝ NL (3)
time(i,j;IWD)

One suggestion for the above formula is given below in which

time(i, j;velIWD) is the time taken for the IWD with velocity

velIWD to move from location i to j. The soil added to the IWD is
calculated by

as

Δsoil(i,,j) = (4)
bs + cs. time2θ(i,j; velIWD)

Here, the parameters, as, bs, cs and θ are user-selected positive
numbers.

The duration of time for the IWD is calculated by the simple laws

of physics for linear motion. Thus, the time taken for the IWD to
move from location i to j is proportional to the velocity of the
IWD, velocity (IWD), and inversely proportional to the distance
between the two locations, d(i,j). More specifically:

1

time(i,j;IWD) ∝ L (5)
velocity(IWD)

where ∝L denotes linear proportionality. One such formula is
given below, which calculates the time taken for the IWD to
travel from location i to j with velocity velIWD:

HUD(i,j)

time(i,j;velIWD) ∝ L (6)
vel(IWD)

where a local heuristic functionHUD(. , .) has been defined for a

given problem to measure the undesirability of an IWD to move
from one location to the next.

Some soil is removed from the visited path between locations i
and j. The updated soil of the path denoted by soil(i,j) is
proportional to the amount of soil removed by the IWD flowing

on the path joining i to j, Δsoil(i,j)= Δsoil(IWD). Specifically:

soil(i, j) ∝ L Δsoil(i, j) (7)

1

Δvelocity(IWD) ∝ NL (1)

soil(i,j)

Here, nonlinearly proportionality is denoted by ∝NL. One
possible formula is given below in which the velocity of the IWD
denoted by velIWD(t) is updated by the amount of soil, soil(i, j)

One such formula has been used for the IWD algorithm such that

soil(i, j) is updated by the amount of soil removed by the IWD

from the path i to j.

soil(i, j) = ρo . soil(i, j) − ρ n . Δsoil(i, j) (8)

where ρo and ρn are often positive numbers between zero and one.
In the original IWDalgorithm for the TSP [1], ρo = 1− ρn.

IWD

between the two locations i and j:
The soil of the IWD denoted by soil

soil(i, j) as shown below:
is added by the amount

soilIWD = soilIWD + Δsoil(i, j) (9)

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

20

IWD

To implement the behavior of path choosing, a uniform random

distribution is used among the soils of the available paths such
that the probability of the IWD to move from location i to j
denoted by p(i,j;IWD) is inversely proportional to the amount of

soils on the available paths.

a problem to be denoted by q (.). Then, the quality of a solution
TIWD found by the IWD is given by q (TIWD). Therefore, the

iteration best solution TIB is given by:

TIB = arg max q (TIWD) (13)

IWDs

p(i,j;IWD) ∝ L soil(i, j) (10)

The lower the soil of the path between locations i and j, the more
chance this path has for being selected by the IWD located on i.

∀

It should be noted that at the end of each iteration of the
algorithm, the total-best solution TTB is updated by the current

IB

One such formula based on (10) has been used in which the iteration-best solution T as follows:

probability of choosing location j is given by

f(soil(i, j))

p(i,j;IWD) = (11)

∑ f(soil(i, k))

k∉vc(IWD)

1

where f(soil(i, j)) =

ϵs + g(soil(i, j)) The constant parameter εs

is a small positive number to prevent a possible division by zero
in the function f (.) . The set VC(IWD) denotes the nodes that the

IWD should not visit to keep satisfied the constraints of the
problem.

The function g(soil(i, j)) is used to shift the soil(i, j) of the path

TTB if q(TTB) ≥ q(TIB)

TTB = (14)

TIB otherwise

At the end of each iteration of the IWD algorithm, the amount of

soil on the edges of the iteration-best solution TIB is reduced
based on the quality of the solution. One such mechanism to
update the soil(i, j) of each edge (i, j) is:

soil(i,j) = ρs . soil(i,j) –

ρIWD . 1/(NIB-1) . soilIWD ∀ (i,j) ϵ TIB (15)
IB

where soilIB represents the soil of the iteration-best IWD. The
iteration-best IWD is the IWD that has constructed the iteration-
best solution TIB at the current iteration. NIB is the number of

IB

joining nodes i and j toward positive values and is computed by nodes in the solution T .ρIWD is the global soil updating

soil(i, j) if min(soil(i, l)) ≥ 0

k∉vc(IWD)

g(soil(i, j)) = (12)
soil(i, j) - min(soil(i, l)) else

k∉vc(IWD)

where the function min(.) returns the minimum value of its
arguments.

The IWDs work together to find the optimal solution to a given
problem. The problem is encoded in the environment of the
IWDs, and the solution is represented by the path that the IWDs
have converged to.

5. MODIFIED INTELLIGENT WATER DROP

(MIWD) ALGORITHM

The MIWD algorithm employs a number of IWDs to find the
optimal solutions to a given problem. The problem is represented
by a graph (N, E) with the node set N and edge set E. This graph
is the environment for the IWDs and the IWDs flow on the edges

of the graph.

Each IWD begins constructing its solution gradually by traveling
between the nodes of the graph along the edges until the IWD
finally completes its solution denoted by TIWD. Each solution
TIWD is represented by the edges that the IWD has visited. One
iteration of the IWD algorithm is finished when all IWDs
complete their solutions.

After each iteration, the iteration-best solution TIB is found. The

parameter, which should be chosen from[0,1]. ρs is often set as (1
+ ρIWD).

Then, the algorithm begins another iteration with new IWDs but
with the same soils on the paths of the graph and the whole
process is repeated. The MIWD algorithm stops when it reaches
the maximum number of iterations itermax or the total-best

solution TTB achieves the expected quality demanded for the
given problem.

The IWD algorithm as expressed in the following ten steps:

1) Initialization of static parameters:

a) The graph (N, E) of the problem is given to the
algorithm, which contains NC nodes.

b) The quality of the total-best solution TTB is initially
set to the worst value: q(TTB) = −∞

c) The maximum number of iterations max iter is
specified by the user and the algorithm stops when it
reaches itermax.

d) The iteration count itercount which counts the number
of iterations, is set to zero.

e) The number of water drops NIWD is set to a positive
integer value. This number should at least be equal to
two. However, NIWD is usually set to the number of

nodes NC of the graph.

f) Velocity updating parameters are av , bv and cv. Here,
av = cv = 1 and bv = 0.01

g) Soil updating parameters are a , b , and c . Here, a =

iteration-based solution TIB is the best solution based on a quality
function among all solutions obtained by the IWDs in the current

bs = 1 and cs = 0.01
s s s s

iteration. TIB is used to update the total-best solution TTB. The
total-best solution TTB is the best solution since the beginning of

the IWD algorithm, which has been found in all iterations.

For a given problem, an objective or quality function is needed to
measure the fitness of solutions. Consider the quality function of

h) The local soil updating parameter is ρn. Here, ρn = 0.9
except for the AMT, which is ρn = −0.9.

i) The global soil updating parameter is ρIWD. Here,

ρIWD = 0.9.

j) The initial soil on each edge of the graph is denoted

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

21

by the constant InitSoil such that soil of the edge
between every two nodes i and j is set by soil(i,j) =
InitSoil .Here, InitSoil = 10000.

k) The initial velocity of each IWD is set to InitVel .
Here, InitVel = 200.

2) Initialization of dynamic parameters:

a) Every IWD has a visited node list VC(IWD), which is
initially empty: VC(IWD) = { }.

b) Each IWD’s velocity is set to InitVel.

c) All IWDs are set to have zero amount of soil.

3) Spread the IWDs randomly on the nodes of the graph as

their first visited nodes.

4) Update the visited node list of each IWD to include the

6. CONVERGENCE PROPERTIES OF THE MIWD

ALGORITHM
Let the graph (N, E) represents the graph of the given problem.
This graph is assumed to be a fully connected graph with NC

nodes. Let NIWD represents the number of IWDs in the IWD

algorithm. In the soil updating of the algorithm, two extreme
cases are considered:

1) Case (i): Only those terms of the IWD algorithm, which
increase soil to an edge (arc) of (N,E), are considered.

2) Case (ii): Only those terms of the IWD algorithm, which
decrease soil to an edge (arc) of (N,E), are considered.

For each case, the worst-case is followed.

For case (i), the highest possible value of soil that an edge can

hold after m iterations, soil(edgemax), will be:

nodes just visited.

soil(edge
) = ((ρ ρ)mIS) (19)

max s o o

5) Repeat steps 5.a to 5.d for those IWDs with partial solutions.

where the edge is denoted by edge

max. ISo

is the initial soil of an

a) For the IWD residing in node i, choose the next node
j, which doesn’t violate any constraints of the
problem and is not in the visited node list vc(IWD) of

IWD

edge (i, j), which is denoted by InitSoil in the IWD algorithm. ρo

is used in (8)and ρs is used in (15).

For case (ii), the lowest possible value of soil for an edge is
the IWD, using the pi (j) which is given in (11).

computed and is denoted by edge

, after m iterations,

Then, add the newly visited node j to the list

VC(IWD).

b) For each IWD moving from node i to node j, update
its velocity velIWD (t) by,

velIWD(t+1) = velIWD(t) + av (16)

min

as

soil(edgemin) = m(ρIWD - ρIWD. NIWD) (20)

bs

where NIWD is the number of IWDs. Soil updating parameters as

bv + cv. soil2(i,j) and bs are defined in (4). ρIWD is the global soil updating

where velIWD (t +1) is the updated velocity of the
IWD.

c) For the IWD moving on the path from node i to j,

compute the soil, Δsoil(i,j) that the IWD loads from
the path by the following equation, where the
heuristic Undesirability HUD(j) is defined
appropriately for the given problem in (4) and (6).

d) Update the soil that IWD carries soilIWD by using (9)

and also update the soil soil(i, j) of the path from
node i to j traversed by that IWD by

soil(i, j) = (1-ρn).soil(i, j)−ρn.Δsoil(i, j) (17)

6) Find the iteration-best solution TIB from all the solutions

TIWD found by the IWDs using (13)

7) Update the soils on the paths that form the current
iteration-best solution TIB by

soil(i,j) = (1+ρIWD). soil(i,j)

-ρIWD . 1/(NIB-1) . soilIWD ∀ (i,j) ϵ TIB (18)
IB

8) Update the total best solution TTB by the current iteration-

best solution TIB using (14)

9) Increment the iteration number by Itercount = Itercount + 1.

Then, go to step 2 if Iter count < Itermax.

10) The algorithm stops with the total-best solution TTB.

parameter used in (18). ρn is the local soil updating parameter
used in (17).

Based on (19) and (20), the following proposition is stated:

6.1 Proportion 1
The soil of any edge in the graph (N,E) of a given problem after
m iterations of the MIWD algorithm remains in the interval [
soil(edgemin), soil(edgemax)]. The probability of finding any

feasible solution by an IWD in iteration m is (Plowest)
NC-1 where

the probability of any IWD, going from node i to node j, is
always bigger than Plowest.

Since there are NIWD IWDs, then the probability P(s;m) of
finding any feasible solution s by the IWDs in iteration m is:

P(s;m) = NIWD (Plowest)
NC-1 (21)

Then at the end of M iterations of the algorithm,

M

P(s;M) = 1 – Π (1 – P(s;m)) (22)

m=1

Because 0 < P(s;m) ≤ 1, then by making M large enough, it is
concluded that:

M

lim Π (1 – P(s;m)) = 0 (23)

M→∞ m=1

Therefore, the following proposition is true.

 International Conference on Emerging Technology Trends (ICETT) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

22

2

6.2 Proportion 2
If P(s;M) represents the probability of finding any feasible
solution s within M iterations of the IWD algorithm. As M gets
larger, P(s;M) approaches to one:

lim P(s;M)) = 1 (24)
M→∞

Knowing the fact that the optimal solution s * is a feasible
solution of the problem, from above proposition, the following
proposition is concluded.

6.3 Proportion 3
The IWD algorithm finds the optimal solution s * of any given
problem with probability one if the number of iterations M is
sufficiently large.

It is noticed that the required M to find the optimal solution s *
should be decreased by careful tuning of parameters of the IWD
algorithm for the given problem.

7. MIWD FOR THE TRAVELING SALESMAN

PROBLEM(TSP)

A solution of the TSP having the graph (N, E) is an ordered set of
n distinct cities. For such a TSP with n cities, there are (n −1)!/ 2
feasible solutions in which the global optimum(s) is sought.

A TSP solution for an n-city problem may be represented by the
tour T = (c1 ,c2 ,...,cn). The salesman travels from city c1 to c2,

then from c2 to c3, and he continues this way until it gets to city

cn. Then, he returns to the first city c1, which leads to the tour
length TL(.), defined by:

A modification to the IWD-TSP has been proposed in which
finds better tours and hopefully escape local optimums. After a
few number of iterations, say NI, the soils of all paths (i, j) of the

graph of the given TSP are reinitialized again with the initial soil

InitSoil except the paths of the total-best solution TTB, which are
given less soil than InitSoil. The soil re – initialization after each
NI iterations is expressed in the following equation:

αIΓI InitSoil for every (i,j) ϵ TTB

soil(i,j) = (28)
InitSoil otherwise

where αI is a small positive number chosen here as 0.1. ΓI denotes
a random number, which is drawn from a uniform distribution in

the interval [0, 1]. As a result, IWDs prefer to choose paths of TTB

because less soil on its paths is deposited.

8. EXPERIMENTAL RESULTS

Here, the proposed Modified IWD algorithm has been tested for
solving the TSP, by generating artificial problems. The results are

shown in the Fig.1.

n

TL(c1 ,c2 ,...,cn) = ∑ d (ci ,ci+1) (25)
i=1

such that cn+1 = c1 and d(.,.) is the Euclidean distance. The goal is

to find the optimum tour T* = (c*
1 ,c

*
 ,...,c*

n) such that for every
other feasible tour T :

∀T : TL (T*) ≤ TL (T) (26)
An IWD starts its tour from a random node and it visits other
nodes using the links of the graph until it returns to the first node.

The IWD changes the soil of each link that it flows on while
completing its tour.

For the TSP, the constraint that each IWD never visits a city
twice in its tour must be kept satisfied. Therefore, for the IWD, a
visited city list VC(IWD) is employed. This list includes the cities

visited so far by the IWD. So, the next possible cities for an IWD
are selected from those cities that are not in the visited list
VC(IWD) of the IWD. One possible local heuristic for the TSP,

denoted by HUDTSP (i, j), has been suggested as follows:

HUDTSP (i, j) = || C(i) – C(j) || (27)

where c(k) denotes the two dimensional positional vector for the
city k . The function ||.|| denotes the Euclidean norm. The local
heuristic HUD (i,j) TSP measures the undesirability of an IWD to
move from city i to city j . For near cities i and j, the heuristic
measure HUD(i , j) becomes small whereas for far cities i and j ,
the measure HUD(i , j) becomes big. It is reminded that paths
with high levels of undesirability are chosen fewer times than
paths with low levels of undesirability. In the IWD algorithm, the

time taken for the IWD to pass from city i to city j , is
proportional to the heuristic HUDTSP (i , j).

Fig 1. Best tours of MIWD_TSP for (a) 50 cities (b) 60 cities

(c) 70 cities (d) 100 cities

The modified IWD algorithm finds better tours and hopefully
escapes local optimums. It should be mentioned that the IWD
algorithm converges fast to optimum solutions. Moreover, each
iteration of the IWD algorithm is computationally light.

In the ACO algorithm, an ant cannot remove pheromones from an

edge whereas in the IWD algorithm, an IWD can both remove
and add soil to an edge.

In the IWD algorithm, the changes made on the soil of an edge
are not constant and they are dependent on the velocity and soil
of the IWDs visiting that edge. In contrast, in the ACO algorithm,
each ant deposits a constant amount of pheromone on the edge.

Besides, the IWDs may gain different velocities throughout an
iteration of the IWD algorithm whereas in ACO algorithms the
velocities of the ants are irrelevant.

 International Conference on Emerging Technology Trends
(ICETT) 2011

 Proceedings published by International Journal of Computer
Applications® (IJCA)

23

9. CONCLUSION AND FUTURE ENHANCEMENTS

The experiments indicate that the IWD algorithm is capable to
find optimal or near optimal solutions. However, there is an open
space for modifications in the standard IWD algorithm,
embedding other mechanisms that exist in natural rivers. Also
some new better local heuristics can be invented that fit better
with the given problem.

The IWD can also be used for solving n-queen problem, multi-
dimensional knapsack problem and even for automatic multilevel
thresholding in images.

As a consequence, further research can focus on the points for

amplification of strengths and eliminating the weaknesses. The
IWD algorithm demonstrates that the nature is an excellent guide
for designing and inventing new nature-inspired optimization
algorithms.

10. REFERENCES

[1] Haibin Duan, Senqi Liu, and Xiujuan Lei (2008),
Air robot path planning based onIntelligent
Water Dropsoptimization, IEEE World
Congress on ComputationalIntelligence, pp. 1397
– 1401

[2] Hamed Shah_Hosseini (2007), Problem
solving by intelligent water drops, Evolutionary
Computation, 2007. CEC 2007. IEEE Congress, pp.

3226 – 3231

[3] Hamed Shah-Hosseini (2008), Intelligent water drops
algorithm: A new optimization method for solving
the multiple knapsack problem, International
Journal of Intelligent Computing and Cybernetics,

Vol. 1 Iss: 2, pp.193 – 212

[4] Hamed Shah_Hosseini (2009), The intelligent water
drops algorithm: a nature-inspired swarm-based
optimization algorithm, InternationalJournalof Bio-

Inspired Computation Volume 1, No.1/2, pp.71 –
79

[5] Kamkar, Iman, Akbarzadeh-T, Mohammad-R.,
Yaghoobi, and Mahdi (2010), Intelligent water
drops a new optimization algorithm for solving the
Vehicle Routing Problem, Systems Man and

Cybernetics (SMC), pp.4142 –4146

[6] Liu Wei and Zhou Yuren (2010), An Effective
Hybrid Ant Colony Algorithm for Solving the
Traveling Salesman Problem,
IntelligentComputation Technology and

Automation (ICICTA), Volume 1, pp. 497 – 500

[7] Mohammad Reza Bonyadi, Mostafa Rahimi
Azghadi and Hamed Shah-Hosseini
 (2008), Population-Based
Optimization Algorithms for Solving the Travelling

Salesman Problem, Travelling Salesman Problem,
pp. 202
– 236

[8] Wei Zhou, Yuanzong Li (2010), An improved
genetic algorithm for multiple traveling salesman
problem, Informatics in Control, Automation and

Robotics (CAR), Volume 1, pp. 493 – 495

[9] Yunming Li (2010), Solving TSP by an ACO-and-
BOA- based hybrid algorithm, Computer
Application and System Modeling (ICCASM),

Volume: 12, pp. 189 – 192

[10] Zhong Liu and Lei Huang (2010), A mixed discrete
particle swarm optimization for TSP, Advanced
Computer Theory and Engineering (ICACTE),

Volume 2, pp. 208 – 211

