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ABSTRACT 
In this paper, a modification to the new problem solving 

algorithm called “Intelligent Water Drops” or simply IWD 
algorithm has been proposed. This algorithm is based on the 
dynamic of river systems and the actions that water drops do in 
the rivers. Based on the observation on the behavior of natural 
water   drops,   artificial   water   drops   are   developed   which 
possesses some of the remarkable properties of the natural water 
drops. These ideas are embedded into the proposed algorithm for 
solving the Traveling Salesman Problem or the TSP. Here a 

local Heuristic function  has been  added  to the original IWD 
algorithm, which measures the undesirability of an IWD to move 
from one node to another. Also it is suggested that, after a few 
number of iterations, the soils of all paths of the graph of the 
given TSP are reinitialized again with the initial soil except the 
paths of the total-best solution which are given less soil than 
initial soil. The modified IWD algorithm finds better tours and 
hopefully escapes local optimums. 
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1. INTRODUCTION 

Scientists are beginning to realize more and more that nature is a 
great source for inspiration in order to develop intelligent systems 
and algorithms. In the field of computational Intelligence, 
especially Evolutionary Computation and Swarm-based systems, 
the degree of imitation from nature is surprisingly high and it 
leads to the edge of developing and proposing new algorithms 
and/or systems, which partially or fully follow nature and the 
actions and reactions that happen in a specific natural system or 
species. 

 

Among the most recent nature-inspired swarm-based 
optimization  algorithms  is the Intelligent  Water Drops (IWD) 

algorithm.  IWD  algorithm imitate  some  of the processes that 
happen in nature between the water drops of a river and the soil 
of the river bed. The IWD algorithm was first introduced in [1] in 
which the IWDs are used to solve the TSP. 

 

In the TSP, a map of cities is given to the salesman and he is 
required to visit every city only once one after the other to 
complete his tour and return to its first city. The goal in the TSP 
is to find the tour with the minimum total length among all such 
possible tours for the given map. 

 

A TSP is represented by a graph (N, E) where the node set N 
denotes the n cities of the TSP and the edge set E denotes the 
edges between cities. Here, the graph of the TSP is considered a 

complete graph. Thus, every city has a direct link to another city. 
It is also assumed that the link between each two cities is 
undirected. So, in summary, the graph of the TSP is a complete 
undirected graph. 
 

2. RELATED WORKS 

One  of  the  famous  swarm-based  optimization  algorithms  has 
been  invented  by  simulating  the  behavior of  social  ants in  a 

colony. Ants can find the shortest path from their nest to a food 
source or vice versa with its own intelligence. Other social insects 

generally show such complex and intelligent behaviors are bees 
and termites. Ant Colony Optimization or ACO algorithm and 

Bee Colony Optimization or BCO algorithm are among the 
swarm-based algorithms imitating social insects for optimization. 
 

Evolutionary Computation  is  another  system,  which  has been 
inspired from observing natural selection and reproduction 
systems in nature. Genetic algorithms or GA are among the most 
famous algorithms in this regard. 
 

Artificial Immune Systems or simply AIS follow the processes 
and actions that happen in the immune systems of vertebrates. 
Clonal Selection Algorithms, Negative Selection Algorithms, and 
Immune Network Algorithms are among the most common 
techniques in the field of AIS. 
 

Another swarm-based optimization algorithm is the Particle 
Swarm Optimization. PSO uses a swarm of particles, which each 
one has position and velocity vectors and they move near together 

to find the optimal solution for a given problem. In fact, PSO 
imitates the processes that exist in the flocks of birds or a school 
of fish to find the optimal solution. 

 
3. NATURAL WATER DROPS 

Flowing water drops are observed mostly in rivers, which form 
huge moving swarms. The paths that a natural river follows have 
been created by a swarm of water drops. For a swarm of water 

drops, the river in which they flow is the part of the environment 
that has been dramatically changed by the swarm and will also be 
changed in the future. 
 

One of the attractive features of a water drop flowing in a river is 
its velocity. It is assumed that each water drop of a river can also 
carry an amount of soil. This soil is usually transferred from fast 
parts of the path to the slow parts. As the fast parts get deeper by 
being removed from soil, they can hold more volume of water 
and thus may attract more water. The removed soils, which are 
carried in the water drops, are unloaded in slower beds of the 

river. 
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Assume an imaginary natural water drop is going to flow from 
one point of a river to the next point in the front. Three obvious 
changes such as an increase in the velocity and soil of the water 

av 

ΔvelIWD(t) = (2) 
2α

 

drop and a decrease in the soil of the river’s bed between the two bv + cv. soil (i,j) 

points will happen during this transition. 
 

In fact, an amount of soil of the river’s bed is removed by the 
water drop and this removed soil is added to the soil of the water 
drop. Moreover, the speed of the water drop is increased during 
the transition. 

 

It was mentioned above that a water drop has also a velocity. This 
velocity plays an important role in removing soil from the beds of 

rivers. The following properties are assumed for a flowing water 
drop: 

 

1) A high speed water drop gathers more soil than a slower 
water drop. 

 

2) The velocity of a water drop increases more on a path with 
low soil than a path with high soil. 

 

3) A water drop prefers a path with less soil than a path with 
more soil. 

 

4. INTELLIGENT WATER DROPS 
Based on the aforementioned statements, Intelligent Water Drops 
were developed, which possesses a few remarkable properties of 
a natural water drop. This Intelligent Water Drop, IWD for short, 
has two important properties: 

 

1) The soil it carries, denoted by soil(IWD). 
 

2) The velocity that it posses, denoted by velocity(IWD). 
 

For  each  IWD,  the  values  of both  properties,  soil(IWD)  and 
velocity(IWD) may change as the IWD flows in its environment. 
From the engineering point of view, an environment represents a 
problem that is desired to be solved. A river of IWDs seeks an 
optimal path for the given problem. 

 

Each IWD is assumed to flow in its environment from a source to 
a  desired  destination.  In  an  environment,  there  are  numerous 
paths from a given source to a desired destination. The location of 
the destination may be unknown. If the location of the desired 
destination is known, the solution to the problem is obtained by 
finding the best (often the shortest) path from the source to the 
destination. 

 

However, there are cases in which the destination is unknown. In 
such cases, the solution is obtained by finding the optimum 
destination in terms of cost or any other desired measure for the 
given problem. 

 

An IWD moves in discrete finite-length steps in its environment. 
From its current location i to its next location j, the IWD velocity, 

velocity  (IWD),  is  increased by  an  amount  Δvelocity(IWD), 
which is nonlinearly proportional to the inverse of the soil 
between the two locations i an j, soil(i,j) 

Here, the, av, bv, cv and α are user-selected positive parameters. 
 

Moreover, the IWD’s soil, soil(IWD), is increased by removing 
some soil of the path joining the two locations i an j. The amount 
of soil  added to  the  IWD,   Δsoil(IWD)=  Δsoil(i,j), is  inversely 
(and nonlinearly) proportional to the time needed for the IWD to 
pass from its current location to the next location denoted by 
time(i,j; IWD). 

1 

Δsoil(IWD) = Δsoil(i,j) ∝ NL         (3) 
time(i,j;IWD) 

 

One suggestion for the above formula is given below in which 

time(i, j;velIWD  ) is the time taken for the IWD with velocity 

velIWD to move from location i to j. The soil added to the IWD is 
calculated by 
 

as 

Δsoil(i,,j) =  (4) 
bs + cs. time2θ(i,j; velIWD) 

 

Here, the parameters, as, bs, cs and θ are user-selected positive 
numbers. 
 

The duration of time for the IWD is calculated by the simple laws 

of physics for linear motion. Thus, the time taken for the IWD to 
move from location i to j is proportional to the velocity of the 
IWD, velocity (IWD), and inversely proportional to the distance 
between the two locations, d(i,j). More specifically: 
 

1 

time(i,j;IWD) ∝ L    (5) 
velocity(IWD) 

where ∝L  denotes linear proportionality. One such formula is 
given below, which calculates the time taken for the IWD to 
travel from location i to j with velocity velIWD: 
 

HUD(i,j) 

time(i,j;velIWD) ∝ L (6) 
vel(IWD)

 
 

where a local heuristic functionHUD(. , .) has been defined for a 

given problem to measure the undesirability of an IWD to move 
from one location to the next. 
 

Some soil is removed from the visited path between locations i 
and j. The updated soil of the path denoted by soil(i,j) is 
proportional to the amount of soil removed by the IWD flowing 

on the path joining i to j, Δsoil(i,j)= Δsoil(IWD). Specifically: 

soil(i, j) ∝ L  Δsoil(i,  j)  (7) 
 

1 

Δvelocity(IWD) ∝ NL (1)
 

soil(i,j) 

Here,  nonlinearly  proportionality  is  denoted  by  ∝NL.  One 
possible formula is given below in which the velocity of the IWD 
denoted by velIWD(t) is updated by the amount of soil, soil(i, j) 

One such formula has been used for the IWD algorithm such that 

soil(i, j) is updated by the amount of soil removed by the IWD 

from the path i to j. 
 

soil(i, j) = ρo . soil(i, j) − ρ n . Δsoil(i, j)  (8) 
 

where ρo and ρn are often positive numbers between zero and one. 
In the original IWDalgorithm for the TSP [1], ρo = 1− ρn. 

IWD
 

between the two locations i and j: 
The soil of the IWD denoted by soil 

soil(i, j) as shown below: 
is added by the amount 

soilIWD  = soilIWD +  Δsoil(i,  j)  (9) 
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IWD 

To implement the behavior of path choosing, a uniform random 

distribution is used among the soils of the available paths such 
that the probability of the IWD to move from location i to j 
denoted by p(i,j;IWD) is inversely proportional to the amount of 

soils on the available paths. 

 

a problem to be denoted by q (.). Then, the quality of a solution 
TIWD  found by the IWD is given by q (TIWD). Therefore, the 

iteration best solution TIB is given by: 
 

TIB = arg max q (TIWD) (13) 

IWDs
 

p(i,j;IWD) ∝ L  soil(i, j) (10)
 

The lower the soil of the path between locations i and j, the more 
chance this path has for being selected by the IWD located on i. 

∀

 

It  should  be  noted  that  at  the  end  of  each  iteration  of  the 
algorithm, the total-best solution TTB  is updated by the current 

IB
 

One such formula based on (10) has been used in which the iteration-best solution T as follows: 

probability of choosing location j is given by 

f(soil(i, j)) 

p(i,j;IWD) = (11) 

∑ f(soil(i, k)) 

k∉vc(IWD)

 

1 
 

where f(soil(i, j))  =    
 

ϵs + g(soil(i, j))  The constant parameter εs 

is a small positive number to prevent a possible division by zero 
in the function f (.) . The set VC(IWD) denotes the nodes that the 

IWD  should  not  visit  to  keep  satisfied  the  constraints of the 
problem. 

 

The function g(soil(i, j)) is used to shift the soil(i, j) of the path 

TTB if q(TTB) ≥ q(TIB) 

TTB  =   (14) 

TIB otherwise 

At the end of each iteration of the IWD algorithm, the amount of 

soil on the edges of the iteration-best solution TIB  is reduced 
based on the quality of the solution. One such mechanism to 
update the soil(i, j) of each edge (i, j) is: 
 

soil(i,j) = ρs . soil(i,j) – 

ρIWD . 1/(NIB-1) . soilIWD   ∀ (i,j) ϵ  TIB (15) 
IB 

 
where soilIB represents the soil of the iteration-best IWD. The 
iteration-best IWD is the IWD that has constructed the iteration- 
best solution TIB  at the current iteration. NIB  is the number of 

IB
 

joining nodes i and j toward positive values and is computed by nodes  in  the  solution  T .ρIWD   is  the  global  soil  updating 
 

soil(i, j)  if min(soil(i, l)) ≥ 0 

k∉vc(IWD)

 

g(soil(i, j)) = (12) 
soil(i, j) - min(soil(i, l)) else 

k∉vc(IWD)

 

where  the  function  min(.)  returns  the  minimum  value  of  its 
arguments. 

 

The IWDs work together to find the optimal solution to a given 
problem.  The  problem  is  encoded  in  the  environment  of  the 
IWDs, and the solution is represented by the path that the IWDs 
have converged to. 

 

5. MODIFIED INTELLIGENT WATER DROP 

(MIWD) ALGORITHM 

The MIWD algorithm employs a number of IWDs to find the 
optimal solutions to a given problem. The problem is represented 
by a graph (N, E) with the node set N and edge set E. This graph 
is the environment for the IWDs and the IWDs flow on the edges 

of the graph. 
 

Each IWD begins constructing its solution gradually by traveling 
between the nodes of the graph along the edges until the IWD 
finally completes its solution denoted by TIWD. Each solution 
TIWD is represented by the edges that the IWD has visited. One 
iteration of the IWD algorithm is finished when all IWDs 
complete their solutions. 

After each iteration, the iteration-best solution TIB is found. The 

parameter, which should be chosen from[0,1]. ρs is often set as (1 
+ ρIWD). 
 

Then, the algorithm begins another iteration with new IWDs but 
with the same soils on the paths of the graph and the whole 
process is repeated. The MIWD algorithm stops when it reaches 
the  maximum  number  of  iterations  itermax   or  the  total-best 

solution  TTB   achieves  the  expected  quality  demanded  for  the 
given problem. 
 

The IWD algorithm as expressed in the following ten steps: 
 

1) Initialization of static parameters: 
 

a) The  graph  (N,  E)  of  the  problem  is  given  to  the 
algorithm, which contains NC nodes. 

 

b) The quality of the total-best solution TTB is initially 
set to the worst value: q(TTB ) = −∞ 

 

c) The  maximum  number  of  iterations  max  iter  is 
specified by the user and the algorithm stops when it 
reaches itermax. 

 

d) The iteration count itercount  which counts the number 
of iterations, is set to zero. 

 

e) The number of water drops NIWD  is set to a positive 
integer value. This number should at least be equal to 
two. However, NIWD  is usually set to the number of 

nodes NC of the graph. 
 

f) Velocity updating parameters are av , bv and cv. Here, 
av = cv = 1 and bv = 0.01 

 

g) Soil updating parameters are a , b , and c . Here, a  =
 

iteration-based solution TIB is the best solution based on a quality 
function among all solutions obtained by the IWDs in the current 

 

bs = 1 and cs   = 0.01 
s      s s s 

iteration. TIB  is used to update the total-best solution TTB. The 
total-best solution TTB is the best solution since the beginning of 

the IWD algorithm, which has been found in all iterations. 
 

For a given problem, an objective or quality function is needed to 
measure the fitness of solutions. Consider the quality function of 

h) The local soil updating parameter is ρn. Here, ρn = 0.9 
except for the AMT, which is ρn  = −0.9. 

i) The  global  soil  updating parameter is  ρIWD.  Here, 

ρIWD = 0.9. 
 

j) The initial soil on each edge of the graph is denoted 
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by the constant InitSoil such that soil of the edge 
between every two nodes i and j is set by soil(i,j) = 
InitSoil .Here, InitSoil = 10000. 

 

k) The initial velocity of each IWD is set to InitVel . 
Here, InitVel = 200. 

 

2) Initialization of dynamic parameters: 
 

a) Every IWD has a visited node list VC(IWD), which is 
initially empty: VC(IWD) = { }. 

 

b) Each IWD’s velocity is set to InitVel. 
 

c) All IWDs are set to have zero amount of soil. 
 

3) Spread the IWDs randomly on the nodes of the graph as 

their first visited nodes. 
 

4) Update the visited node list of each IWD to include the 

6. CONVERGENCE PROPERTIES OF THE MIWD 

ALGORITHM 
Let the graph (N, E) represents the graph of the given problem. 
This graph is assumed to be a fully connected graph with NC 

nodes. Let NIWD  represents the number of IWDs in the IWD 

algorithm. In the soil updating of the algorithm, two extreme 
cases are considered: 
 

1) Case (i): Only those terms of the IWD algorithm, which 
increase soil to an edge (arc) of (N,E), are considered. 

 

2) Case (ii): Only those terms of the IWD algorithm, which 
decrease soil to an edge (arc) of (N,E), are considered. 

 

For each case, the worst-case is followed. 
 

For case (i), the highest possible value of soil that an edge can 

hold after m iterations, soil(edgemax), will be: 

nodes just visited.  

soil(edge
 ) = ((ρ ρ )mIS ) (19)

 
max s  o o 

5) Repeat steps 5.a to 5.d for those IWDs with partial solutions.  

where the edge is denoted by edge 
 

max. ISo 

 

is the initial soil of an 

a) For the IWD residing in node i, choose the next node 
j,   which   doesn’t   violate   any   constraints  of   the 
problem and is not in the visited node list vc(IWD) of 

IWD
 

edge (i, j), which is denoted by InitSoil  in the IWD  algorithm. ρo 

is used in (8)and ρs is used in (15). 
 

For case (ii), the lowest possible value of soil for an edge is 
the IWD, using the pi ( j) which is given in (11). 

computed and is denoted by edge
 

, after m iterations,
 

Then,  add  the  newly  visited  node  j  to  the  list 

VC(IWD). 
 

b) For each IWD moving from node i to node j, update 
its velocity velIWD (t) by, 

velIWD(t+1) =  velIWD(t)  + av (16) 

min 
 

as 

 

soil(edgemin) =    m(ρIWD - ρIWD. NIWD) (20) 
 

bs 

 

where NIWD is the number of IWDs. Soil updating parameters as 

bv + cv. soil2(i,j) and  bs are  defined  in  (4).  ρIWD is  the  global  soil  updating 

where velIWD  (t +1) is the updated velocity of the 
IWD. 

 

c) For the IWD moving on the path from node i to j, 

compute the soil, Δsoil(i,j) that the IWD  loads from 
the   path   by  the   following   equation,   where   the 
heuristic Undesirability HUD(j) is defined 
appropriately for the given problem in (4) and (6). 

 

 
d) Update the soil that IWD carries soilIWD by using (9) 

and also update the soil soil(i, j) of the path from 
node i to j traversed by that IWD by 

 

soil(i, j) = (1-ρn).soil(i, j)−ρn.Δsoil(i, j)  (17) 

6) Find the iteration-best solution TIB  from all the solutions 

TIWD found by the IWDs using (13) 
 

7) Update  the  soils  on  the  paths  that  form  the  current 
iteration-best solution TIB by 

 

soil(i,j)  = (1+ρIWD). soil(i,j) 

-ρIWD . 1/(NIB-1) . soilIWD  ∀ (i,j) ϵ TIB   (18) 
IB 

 
8) Update the total best solution TTB by the current iteration- 

best solution TIB using (14) 
 

9) Increment the iteration number by Itercount = Itercount  + 1. 

Then, go to step 2 if Iter count < Itermax. 

10)  The algorithm stops with the total-best solution TTB. 

parameter used in (18). ρn  is the local soil updating parameter 
used in (17). 
 

Based on (19) and (20), the following proposition is stated: 
 

6.1 Proportion 1 
The soil of any edge in the graph (N,E) of a given problem after 
m iterations of the MIWD algorithm remains in the interval [ 
soil(edgemin),  soil(edgemax)  ].  The  probability  of  finding  any 

feasible solution by an IWD in iteration m is (Plowest) 
NC-1 where 

the probability of any IWD, going from node i to node j, is 
always bigger than Plowest. 

 

Since  there  are  NIWD   IWDs,  then  the  probability  P(s;m)  of 
finding any feasible solution s by the IWDs in iteration m is: 

P(s;m) = NIWD (Plowest) 
NC-1 (21) 

Then at the end of M iterations of the algorithm, 

M 
 

P(s;M) = 1 – Π ( 1 – P(s;m) ) (22) 
 

m=1 
 

Because 0 < P(s;m) ≤ 1, then by making M large enough, it is 
concluded that: 
 

M 
 

lim  Π ( 1 – P(s;m) ) = 0 (23) 
 

M→∞   m=1 
 

Therefore, the following proposition is true. 
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2 

6.2 Proportion 2 
If P(s;M) represents the probability of finding any feasible 
solution s within M iterations of the IWD algorithm. As M gets 
larger, P(s;M) approaches to one: 

 

lim P(s;M) ) = 1 (24) 
M→∞ 

 

Knowing  the  fact  that  the optimal  solution  s  * is  a  feasible 
solution of the problem, from above proposition, the following 
proposition is concluded. 

 

6.3 Proportion 3 
The IWD algorithm finds the optimal solution s * of any given 
problem with probability one if the number of iterations M is 
sufficiently large. 

 

It is noticed that the required M to find the optimal solution s * 
should be decreased by careful tuning of parameters of the IWD 
algorithm for the given problem. 

 

7. MIWD FOR THE TRAVELING SALESMAN 

PROBLEM(TSP) 

A solution of the TSP having the graph (N, E) is an ordered set of 
n distinct cities. For such a TSP  with n cities, there are (n −1)!/ 2 
feasible solutions in which the global optimum(s) is sought. 

 

A TSP solution for an n-city problem may be represented by the 
tour T = (c1  ,c2  ,...,cn). The salesman travels from city c1  to c2, 

then from c2 to c3, and he continues this way until it gets to city 

cn. Then, he returns to the first city c1, which leads to the tour 
length TL(.), defined by: 

A modification to the IWD-TSP has been proposed in which 
finds better tours and hopefully escape local optimums. After a 
few number of iterations, say NI, the soils of all paths (i, j) of the 

graph of the given TSP are reinitialized again with the initial soil 

InitSoil except the paths of the total-best solution TTB, which are 
given less soil than InitSoil. The soil re – initialization after each 
NI iterations is expressed in the following equation: 

αIΓI InitSoil    for every (i,j) ϵ TTB
 

 

soil(i,j) =   (28) 
InitSoil otherwise 

 

where αI is a small positive number chosen here as 0.1. ΓI denotes 
a random number, which is drawn from a uniform distribution in 

the interval [0, 1]. As a result, IWDs prefer to choose paths of TTB 

because less soil on its paths is deposited. 
 

8. EXPERIMENTAL RESULTS 

Here, the proposed Modified IWD algorithm has been tested for 
solving the TSP, by generating artificial problems. The results are 

shown in the Fig.1. 

 

n 
 

TL(c1 ,c2 ,...,cn) = ∑ d (ci ,ci+1) (25) 
i=1 

 

such that cn+1 = c1 and d(.,.) is the Euclidean distance. The goal is 

to find the optimum tour T* = (c*
1 ,c

*
 ,...,c*

n) such that for every 
other feasible tour T : 

∀T : TL (T*) ≤ TL (T)  (26) 
An IWD starts its tour from a random node and it visits other 
nodes using the links of the graph until it returns to the first node. 

The IWD changes the soil of each link that it flows on while 
completing its tour. 

 

For the TSP, the constraint that each IWD never visits a city 
twice in its tour must be kept satisfied. Therefore, for the IWD, a 
visited city list VC(IWD) is employed. This list includes the cities 

visited so far by the IWD. So, the next possible cities for an IWD 
are selected from those cities that are not in the visited list 
VC(IWD) of the IWD.  One possible local heuristic for the TSP, 

denoted by HUDTSP (i, j), has been suggested as follows: 
 

HUDTSP (i, j) = || C(i) – C(j) || (27) 
 

where c(k) denotes the two dimensional positional vector for the 
city k . The function ||.|| denotes the Euclidean norm. The local 
heuristic HUD (i,j) TSP measures the undesirability of an IWD to 
move from city i to city j . For near cities i and j, the heuristic 
measure HUD(i , j) becomes small whereas for far cities i and j , 
the measure HUD(i , j) becomes big. It is reminded that paths 
with high levels of undesirability are chosen fewer times than 
paths with low levels of undesirability. In the IWD algorithm, the 

time  taken  for  the  IWD  to  pass  from  city  i  to  city  j  ,  is 
proportional to the heuristic HUDTSP (i , j). 

 
 
 
 
 
 

 
Fig 1. Best tours of MIWD_TSP for (a) 50 cities (b) 60 cities 

(c) 70 cities (d) 100 cities 
 

The modified IWD algorithm finds better tours and hopefully 
escapes local optimums. It should be mentioned that the IWD 
algorithm converges fast to optimum solutions. Moreover, each 
iteration of the IWD algorithm is computationally light. 
 

In the ACO algorithm, an ant cannot remove pheromones from an 

edge whereas in the IWD algorithm, an IWD can both remove 
and add soil to an edge. 
 

In the IWD algorithm, the changes made on the soil of an edge 
are not constant and they are dependent on the velocity and soil 
of the IWDs visiting that edge. In contrast, in the ACO algorithm, 
each ant deposits a constant amount of pheromone on the edge. 
 

Besides, the IWDs may gain different velocities throughout an 
iteration of the IWD algorithm whereas in ACO algorithms the 
velocities of the ants are irrelevant. 
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9. CONCLUSION AND FUTURE ENHANCEMENTS 

The experiments indicate that the IWD algorithm is capable to 
find optimal or near optimal solutions. However, there is an open 
space   for   modifications   in   the   standard   IWD   algorithm, 
embedding other mechanisms that exist in natural rivers. Also 
some new better local heuristics can be invented that fit better 
with the given problem. 

 

The IWD can also be used for solving n-queen problem, multi- 
dimensional knapsack problem and even for automatic multilevel 
thresholding in images. 

 

As a consequence, further research can focus on the points for 

amplification of strengths and eliminating the weaknesses. The 
IWD algorithm demonstrates that the nature is an excellent guide 
for designing and inventing new nature-inspired optimization 
algorithms. 
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