
 International Conference on Intelligent Systems and Data Processing (ICISD) 2011

 Proceedings published by International Journal of Computer Applications® (IJCA)

32

Impact of Multi-Agents in Hospital Environment

Mijal Mistry

Assistant Professor
Institute of Science & Technology for Advanced

studies and Research,
Sardar Patel University

Dr. Dipti Shah
Associate Professor

G.H.Patel Post Gradutate Department of Computer
Science & Technology
Sardar Patel University

ABSTRACT
This paper presents the architecture of the hospital system with

the help of the Jade platform. It gives the idea about different

agents used in hospital and how the communication occurred

between them and how to manage different agents. Multi Agent

System (MAS) provides an efficient way for communicating

agents and it is decentralized. Prototype model is developed for

the study purpose and shows the impact of the agent‟s platform

and how it is used to solve the complex problems arise into the

hospital domain. The paper discusses prototype model of Multi

Agents in hospital environment and its impact.

Keywords

Hospital Domain, Jade, Multi Agents, Health Care Domain

1. INTRODUCTION
The term „agent‟, or software agent, has found its way into a

number of technologies and has been widely used, for example, in

artificial intelligence, databases, operating systems and computer

networks literature. Therefore, an agent is autonomous, because it

operates without the direct intervention of humans or others and

has control over its actions and internal state. An agent is social,

because it cooperates with humans or other agents in order to

achieve its tasks. An agent is reactive, because it perceives its

environment and responds in a timely fashion to changes that

occur in the environment. An agent is proactive, because it does

not simply act in response to its environment but is able to exhibit

goal-directed behavior by taking initiative.[14]

2. AGENT MANAGEMENT
The agent management reference model consists of the

components depicted in Figure 1.[14]

Agent Platform (AP): This provides the physical infrastructure in

which agents are deployed. The AP consists of the machines,

operating systems, FIPA (Foundation for Intelligent Physical

Agents) agent management components (described below), the

agents themselves and any additional support software.

The specific internal design of an AP is left to the developers of

an agent system and is not a subject of FIPA standardization

beyond the components discussed here. As a single AP may be

spread across multiple computers, resident agents do not have to

be co-located on the same host.

Figure 1 Agent Management Reference Model

The specific internal design of an AP is left to the developers of

an agent system and is not a subject of FIPA standardization

beyond the components discussed here. As a single AP may be

spread across multiple computers, resident agents do not have to

be co-located on the same host.

Agent: An agent is a computational process that inhabits an AP

and typically offers one or more computational services that can

be published as a service description. The particular design of

these services, otherwise known as capabilities, is not the concern

of FIPA, which only mandates the structure and encoding of

messages used to exchange information between agents (and

other third party technologies if FIPA compliant).

Directory Facilitator (DF): The DF is an optional component of

an AP providing yellow pages services to other agents. It

maintains an accurate, complete and timely list of agents and

must provide the most current information about agents in its

directory on a non-discriminatory basis to all authorized agents.

An AP may support any number of DFs which may register with

one another to form federations.[14]

Agent Management System (AMS): The AMS is a mandatory

component of an AP and is responsible for managing the

operation of an AP, such as the creation and deletion of agents,

and overseeing the migration of agents to and from the AP. Each

agent must register with an AMS in order to obtain an AID which

is then retained by the AMS as a directory of all agents present

within the AP and their current state (e.g. active, suspended or

waiting). Agent descriptions can be later modified under

restriction of authorization by the AMS. The life of an agent with

an AP terminates with its deregistration from the AMS.[14]

 International Conference on Intelligent Systems and Data Processing (ICISD) 2011

 Proceedings published by International Journal of Computer Applications® (IJCA)

33

Figure 2 FIPA message structure

After deregistration, the AID of that agent can be removed by the

directory and can be made available to other agents who should

request it. Agent descriptions can also be searched for within the

AMS, and the AMS is the custodian of the AP description that

can be retrieved by requesting the action get-description.

Message Transport Service (MTS): The MTS is a service

provided by an AP to transport (Foundation for Intelligent

Physical Agents) FIPA ACL (Agent Communication Language)

messages between agents on any given AP and between agents on

different APs. The general structure of a FIPA-compliant

message is depicted in Figure 2.

Agents in a multi-agent system (MAS) must be able to interact

and communicate with each other. This usually requires a

common language, an Agent Communication Language, or ACL.

Much work has been done in developing ACLs that are

declarative, syntactically simple, and readable by people. KQML

[1] and FIPA-ACL [2] are two of the most widely used ACLs in

multi-agent systems. These languages have been very successful

in facilitating the communication and coordination of software

agents in a variety of domains including organizational decision

making [3], [4]; financial management [5]; and even aircraft

maintenance [6].

3. COMMUNICATION WITHIN AGENT

BASED ARCHITECTURE
The agents need to correspond between themselves, as well as

with the services of their environment. There are numerous

respond mechanisms are available like: message swapping and

transferring, methods invocation. There are also standardized

inter-agent communication languages like KQML (Knowledge

Query Management Language), ACL (Agent Communication

Language) is also used for further communication.

Another language called ACL (Agent Communication Language)

[8] is a successor of KQML and it is full with rich semantics. This

language was proposed by FIPA [8], ACL aims to standardize

communication between agents.

In our approach, we use ACL for communication between agents

and the contents of the messages we use XPDL. The use of ACL

and XPDL in agent communication allows getting

interoperability by eliminating the problem of various exchanges

among the different doctors in the agent platform environment.

The exchanged messages

There is standard syntax for messages, which is supplied bi FIPA

[8]. These messages are based on the theory of the act do

dialogue, which is the result of the linguistic study of human

communication [8]. Basically, this is used for achieving the result

from the language. In the FIPA-ACL, There are no specific

language exist for the description of the values of the messages.

Few languages can be used for the description of the contents of

the message such as KIF (Knowledge Interchange Format),

Semantic language (SL), prologue and XML (Extensible Mark-up

Language) XPDL (based in XML language) etc.[13] This

language is also used for the specification and understanding of

the contents of messages between agents. The messages swapping

in our architecture are described in FIPA-ACL/XPDL. [5]

The use for XPDL for the contents of communications among

agents gives the possibility to display of messages into different

Web browsers and also allows to integrate the system with other

web-based applications.

4. IMPLEMENT MULTI AGENT SYSTEM

WITH JADE
JADE (Java Agent Development framework) is the multi-agent

platform; developed in Java by CSELT (Research Groups

Telecom, Italy). It provides a FIPA (Foundation for Intelligent

Physical Agents) compliant environment and implementation of

multi agent system [9]. JADE includes two basic parts: an agent

platform and software package. It also provides several features

which are mentioned following [9]:

A scattered agent platform: the agent platform can be spilt among

several hosts (provided they can be connected via RMI). In

JADE, agents can be implemented as threads and the life of that

agent is within Agent containers which provides runtime support

for the agent implementation.[16]

A JADE platform is composed of agent containers that can be

distributed over the network. Agents live in containers which are

the Java process that provides the JADE run-time and all the

services needed for hosting and executing agents. There is a

special container, called the main container, which represents the

bootstrap point of a platform: it is the first container to be

launched and all other containers must join to a main container by

registering with it. The UML diagram in Figure 3 schematizes the

relationships between the main architectural elements of JADE.

In Jade, an agent is an instance of the Java class defined by the

programmer. This class itself is an extension of the basic Agent

class (included jade.core). It implies the inheritance of the set of

basic methods to implement the personalized behavior of the

agent. The agent is implemented using multitasking; where the

tasks (behaviors) are executed concurrently. Every functionality

supplied by an agent must be implemented in one or several

behaviors. [16]

 International Conference on Intelligent Systems and Data Processing (ICISD) 2011

 Proceedings published by International Journal of Computer Applications® (IJCA)

34

Figure 3 Relationship between the main architectural

elements

5. PROTOTYPE MODEL
To study the real impact of the multi agents a prototype model

has been developed. Following are the different classes which are

used for implementing the prototype model.

 Agent_Schedule

 Agent_Doctor

 Agent_Search

The Agent_Schedule class is used to make the appointment with

the doctor. The Agent_Doctor class is used to retrieve the

available doctors for the appointment. It gives the list of doctors

who are ready to take appointments with patients. The

Agent_Search class searches into the already made appointments

and check the free slots for schedule.

The following Java code represents the implementation of the

Schedule class and the Search agent class in hospital

environment. These classes are extensions of the basic Agent

class respectively of the Schedule Agent class , Doctor agent and

Search agent.

public class Agent_Doctor extends Agent

{

protected void setup ()

{

addBehaviour (new Simple Behaviour (this))

{

// Processing

}

}

public class Agent_Schedule extends Agent

{

protected void setup ()

{

addBehaviour (new Simple Behaviour (this))

{

// Processing

}

}

public class Agent_Search extends Agent

{

class reception extends simpleBehaviour {

// Processing

}

Public reception (Agent a) {super (a);}

Protected void setup()

{

reception mybehaviour = new reception(this);

addBehaviour (mybehaviour);

}

}

The Agent_Schedule class shown above, represents a type of

agent exactly as a normal Java class represents a type of object.

Several instances of the Agent_Schedule class can be launched at

run-time. Unlike normal Java objects, which are handled by their

references, an agent is always instantiated by the JADE run-time

and its reference is never disclosed outside the agent itself (unless

of course the agent does that explicitly). Agents never interact

through method calls but rather by exchanging asynchronous

messages. Agent_Doctor class provides the available doctors. It

shows the available doctors and how many appointments left for

the doctor. Agent_Search class will also use the Agent_Doctor

class for searching the available doctors and showing them to the

user.

The setup() method is intended to include agent initializations.

Examples of typical operations that an agent performs in its

setup() method are: showing a GUI, opening a connection to a

database, registering the services and starting the initial

behaviors. It is good practice not to define any constructor in an

agent class and to perform all initializations inside the setup()

method. This is because at construction time the agent is not yet

linked to the underlying JADE run-time and thus some of the

methods inherited from the Agent class may not work properly.

From the above code snippet we can get the idea that we have

developed classes for Schedule, Doctor and Search which are

extended from Agent class. All classes can communicate with

each other. Fig. 4 shows how it can be done. From the Fig. 4, one

can get the idea that the system is hosted into different clients and

they are inter-connected using network.

This paper shows the idea of scheduling the appointment with

doctor by creating the agents and passing necessary information

to the agents. Following figure shows the calendar for displaying

the detail schedule information for selected date if any.

 International Conference on Intelligent Systems and Data Processing (ICISD) 2011

 Proceedings published by International Journal of Computer Applications® (IJCA)

35

Here when user changes the date it will also change the

description for the selected date and information into the

appointment space.

By clicking on the Appointment button at the top of the form it

will open another form which allows us to book the appointment

with the doctor.

Here user can enter the necessary information for appointment. If

we want to add some remarks or notes then also we can add using

the appointment description. Once we done with description then

select the appointment date, by clicking on OK it will assign the

appointment. If you want to cancel the appointment just click on

exit button and it will cancel the appointment and come out from

it. Once appointment is created then this information will be

shown on selected date from the main form. Here, we have used

several inbuilt java apis to make the work smoother and faster

and also jade platform for inheriting the different agents apis. For

some getting good look and feel of the form we used java swing.

Following fig. shows the information of the schedule

appointment.

For eg. on the Fix Appointment form when user click on the OK

button it will create the object of the Appointment class using

following code:

Appointment a = new Appointment();

a.setDescription(textArea1.getText());

c = calendar1.getCalendar();

d = c.getTime();

a.setStartingOn(c.getTime());

c = calendar2.getCalendar();

a.setEndingWith(c.getTime());

There are several properties into the Appoinment class like

setDescription, SetDate etc. One of the property is setDescription.

Whatever information we have added into the information part

will be assigned to the setDescription property of the

Appointment class. Once all the statements above stated have

been executed then the string will stored with modification of the

message.

The Appointment class is used to store the information regarding

the schedule and it will also display schedule information as

showing in appointment schedule screen shot. It shows the

information after fixing the appointment with the doctor. For

storing and retrieving this information Appointment class has

been used.

Agents have the potential to assist in a wide range of activities in

hospital environments. They can maintain the autonomy of the

collaborating participants, integrate disparate operating

environments, coordinate distributed data, such as patient records

held in different departments within a hospital or in several

hospitals, clinics and surgeries [10, 11], and other organizations

involved in health care such as insurance companies and

government organizations [12]. In this context agent based

approach is very useful for tackling such issues.

6. IMPACT OF MULTI AGENTS
By implementing the prototype system, we came across several

interesting points for multi agents and its usefulness into

developing the system into hospital environment. Here are the

points which we came across while implementing the system:

 enhances overall system performance

 provides computational efficiency

 reliability

 extensibility

 robustness

 maintainability

 responsiveness

 flexibility

 reuse

[15] A multi-agent system (MAS) is a loosely coupled network of

software agents that interact to solve problems that are beyond the

individual capacities or knowledge of each problem solver.[15]

 International Conference on Intelligent Systems and Data Processing (ICISD) 2011

 Proceedings published by International Journal of Computer Applications® (IJCA)

36

Figure 4 Implementation of MAS architecture in JADE

There are several reasons why using jade. JADE is a software

platform that provides basic middleware-layer functionalities

which are independent of the specific application and which

simplify the realization of distributed applications that exploit the

software agent abstraction (Wooldridge and Jennings, 1995). Jade

has several easy to use customize core functionalities like:

• Full compliance with the FIPA specifications.

• A simple, yet effective, agent life-cycle management.

• Support for ontologies and content languages.

• An in-process interface for launching/controlling a

platform and its distributed components from an external

application.

• Integration with various Web-based technologies including

JSP, Servlets, applets and Web service technology.

• Efficient transport of asynchronous messages via a

location-transparent API.

• A set of graphical tools to support programmers when

debugging and monitoring.

7. CONCLUSION
We have used the Multi Agents for implementing the system in

JADE environment. Our domain is HealthCare and we have

implemented three agents. One Agent is for booking the schedule,

Second Agent will search the booked appointments, how many

appointments have been scheduled, and Another Agent is doctor

agent which gives the information regarding the doctors and its

specialties. There are several other researches have been made

into different domain using multi agents. We have seen several

articles regarding workflow environments, in robotics, multi

agents systems into academic environment, several knowledge

base system using multi agents.

In this paper the attempt is made to make the system more

flexible by using the MAS paradigm. It provides the more

stability in the process. Moreover, its concepts are adequate to

taking in charge adaptability in a workflow environment. Right

now we have used three agents for communication for hospital.

Right now it books the appointment after checking the

availability of the doctors. Our future work will involve to

achieve communication between more complex agents using

MAS and others participants in external environment

applications.

8. REFERENCES
[1] T. Finin, R. Fritzson, and R. McEntire, .KQML as an agent

communication language,. in Proceedings of the 3rd

International Conference on Information and Knowledge

Management, November 1994.

[2] Foundation for intelligent physical agents. [Online].

Available: http://www._pa.org, 1997.

[3] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng,

.Distributed intelligent agents,. IEEE Expert, December

1996.

[4] H. Chalupsky et al., .Electric elves: Agent technology for

supporting human organizations,. AI Magazine, Summer

2002.

[5] K. Decker, K. Sycara, and D. Zeng, .Designing a multi-agent

portfolio management system,. in Proceedings of the AAAI

Workshop on Internet Information Systems, 1996.

[6] O. Shehory, G. Sukthankar, and K. Sycara, .Agent aided

aircraft maintenance,. In Proceedings of Autonomous Agents

'99, May 1999, pp. 306.312.

[7]. Ferber J, "les systeme multiagents: Vers une intelligence

collective" InterEdition, 1997, 239-245

[8] FIPA; 1999, http://www.fipa.org/spec/FIPA98.html

[9] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco ,« Jade

Programmer‟s Guide », university of Parma 200-2003,

http://jade.cselt.it.

[10] Fensel, D., Ontologies (2003), “Silver Bullet for Knowledge

Management and Electronic Commerce”, 2nd edition,

Springer-Verlag, Berlin.

[11] Jonathan M. DiLeo, B.S. Thesis on ontological engineering

and mapping in multiagent systems developement retrieved

from www.stormingmedia.us/84/8408/A840804.html on

20th April 2009.

[12] The Application of Agent Technology to Health Care ,

AgentCities Working Group on Health Care By John L

Nealon and Antonio Moreno

[13] The Workflow Management Coalition, Workflow

Management Coalition Workflow Standard,” Process

Definition Interface -- XML Process Definition Language”,

Document Number WFMC-TC-1025, October 3, 2005,

http://www.wfmc.org/standards/XPDL.htm

[14] Wiley.Developing.Multi.Agent.Systems.with.JADE by

Fabio Bellifemine, Giovanni Caire, Dominic Greenwood

[15] Multi-Agent Systems - Carnegie Mellon University,

http://www.cs.cmu.edu/~softagents/multi.html

[16] Implementation of Multi Agents System to Control

Adaptability in Workflow Environment by Hamdane

Mohmaed El-Kamel, Lezzar Fouzi, Boufenar Chaouki, Mili

SeifEddine.

http://www._pa.org/
http://www.wfmc.org/standards/XPDL.htm
http://www.cs.cmu.edu/~softagents/multi.html

