
International Conference on Information Systems and Technology (ICIST) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

27

A Pedagogically Significant Approach to Inputting

Mathematical Expressions at Runtime in C

V. N. Krishnachandran, Jisha Jose Panackal and Salkala K.S.
Vidya Academy of Science & Technology,

Thrissur - 680501, Kerala, India.

ABSTRACT
The problem of inputting a mathematical expression at runtime in

C is generally considered very difficult. The general approach to

solve the problem is to include specialized parser packages as

header files. It appears that such packages are available only for

advanced versions of C like C++ or C#. In this paper we consider

a very elementary solution to the problem which does not make

use of external packages and uses only the basic concepts of the

C programming environment. It also does not require the in-line

implementation of the extremely difficult task of parsing a

mathematical expression. This approach is accessible to

beginning programmers also. In broad outline, the approach

adopted is that while a programme is being executed, it generates

another programme, compiles and executes the new programme,

and finally returns to the original programme. Even though the

method may not be satisfactory in terms of speed or efficiency, it

is pedagogically significant as it can be employed as a tool for

throwing more light on the basic concepts of compilation and

execution of a programme.

Keywords – mathematical expressions; runtime evaluation;

C; eval; inputting mathematics; arser

1. INTRODUCTION
Every school boy or girl who had some experience with computer

programming would have written programmes to compute and

print the values of mathematical expressions. For example, every

school child would be capable tackling the elementary problem of

writing a programme to compute and print the amount of simple

interest using the formula for calculating the simple interest, or

the advanced problem of computing and printing the length of the

hypotenuse of right angled triangle given the lengths of the other

two sides of the triangle (advanced because it uses the

mathematical function for the extraction of square root of a given

number). In these methods, the child is forced to write a new

programme to evaluate every new mathematical expression. In

this paper we examine whether we can specify the function to be

evaluated at runtime so that there would be one universal

programme which can be used to compute and print the values of

any given mathematical expression.

We have explored this possibility in this paper in the context of

the C language. Every C programmer knows how to compute and

print the value of a mathematical expression. The expression to

be evaluated has to be encoded in the syntax of the C language

and has to be placed at the appropriate location in the program.

The expression can contain any of the built-in functions known to

C, or, it may also contain suitable user defined functions. The C

code for a mathematical expression is a string of characters and

so every mathematical expression can obviously be represented

as a string. The problem that we are posing to ourselves in this

paper, is how to specify this string at runtime. More clearly, the

problem we are examining is whether it is possible to create a

programme which accepts a mathematical expression at runtime

as a string, then compute and print the value of the expression. In

other words, we need a programme which evaluates, or coverts, a

string into a mathematical expression.

A moment‟s thought would be enough to convince oneself that the

requirement put forward in the previous paragraph is not an idly

speculated need at an elementary level. A situation like this arises if

one tries to write one universal program which can be used for

numerically solving any given equation f (x) = 0 using standard

techniques like the bisection method or the Newton-Raphson

algorithm. We need one program which, while being executed,

accepts any function f (x) as in-put and prints the solution of the

equation f (x) = 0. The necessity, or rather the possibility, of writing

such a programme is interesting in itself and will be an illuminating

learning experience for students learning the C programming

language. This problem is generally considered as a difficult

problem in the context of the C language. But it is trivial in some

programming environments. In Section 2 of this paper, we have

presented a few programming languages which provide an easy

solution to the problem presented above. This is not an exhaustive

analysis of all programming contexts. Rather, it is a sample of the

available techniques. In later sections we examine how the problem

can be solved in C environment.

In C or C++ there is no direct facility for the run-time evaluation of

expressions ([1], Section 5.7.3.). In the C context, most

programmers suggest a method wherein the mathematical

expressions are parsed either within the programme, or use

specialized header files which simplifies the task of parsing.

Preparing the code for parsing from scratch, though possible, is error

prone and not very satisfactory. In this paper we show that there is

indeed a very elementary solution to the problem which is very easy

to understand and implement. The basic idea of the suggested

solution to the problem is to write a programme which at the

execution time creates a second programme, The second programme

is compiled and executed while the first programme is still running.

After completing the execution of the second programme, the

control goes back to the original programme and the original

programme is terminated. The steps leading to the solution are

explained in Section 3. The outline of the proposed solution is

discussed in more detail in Section 4. The solution is presented in

Section 5. The paper concludes with a discussion of the pedagogical

significance of the ideas presented in the paper.

The programmes and their outputs relating to the proposed solution

are presented in the environment of the GNU compiler collection.

This has certain advantages in relation to invoking the compiler. the

ideas presented could however be used to develop a solution of the

problem in the context of other C compilers like Borland Turbo C,

etc.

2. INPUTTING MATHEMATICAL

EXPRESSIONS AT RUNTIME IN OTHER

LANGUAGES
In this section we discuss how the problem of inputting

mathematical expressions at runtime is solved in a few popular

languages. It may be noted that the first language to introduce this

feature was Lisp [12] and it was implemented by defining the eval

statement. This feature was subsequently adopted in nearly all later

scripting languages. However systems programming languages like

C lack a similar facility [1]. We have briefly discussed how eval is

implemented in BASIC, Perl, Python and JavaScript. The fact that

Visual Basic, a language that allows programmers to create simple

International Conference on Information Systems and Technology (ICIST) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

28

as well as complex GUI applications, has the capability for

accepting mathematical expressions at runtime is also noted

below. This is achieved via the use a specially designed ActiveX

control (see [1] pp.81 83).

A. BASIC
The need for a facility for inputting mathematical expressions at

runtime had been felt even at the early stages in the development

of high level programming languages. The BASIC was a high-

level programming language developed in 1964 with the declared

purpose of providing computer access to non-science students.

Some later versions of BASIC had included the eval statement.

With the help of this statement, a programme could accept any

mathematical expression such as sin(x) + cos(x) at runtime and

print the value of the expression for any specified value of x ([1]

p.66). „BBC BASIC‟ is one version of BASIC which had

implemented such a feature. The following programme in BBC

BASIC evaluates the expression typed in by the user [2].

PRINT This program evaluates the

expression

PRINT you type in and prints the answer

REPEAT

INPUT Enter an expression

exp$

IF exp$<>END PRINT EVAL

exp$

UNTIL

exp$=END

END

B. Perl

Perl, a language developed in the late 1980s, though basically

designed for text processing, has a feature for run-time evaluation

of expressions and this feature is implemented through the use of

the eval statement. In Perl this is a tremendously powerful and

popular statement and it is sometimes touted as one significant

feature that sets it apart from the C language.[3] Here is a sample

code in Perl using eval ([1], p.67):

Put some code inside \$str

\$ str = $c=$a+$b;

\$ a = 10 ; $b = 20; eval \$ str ;

print \$ c ;

C. Python

Python language can also evaluate expressions on the fly. Again,

the feature is implemented via the eval statement [6]. In Python,

we can pass a chunk of text to a running Python application, and

it is parsed, compiled and executed on the fly. In Python, the

interpreter is always available. For example consider the

problem: Given a mathematical expression in the language as a

string with a free variable named x let it be required to evaluate it

with x bound to a provided value, then evaluate it again with x

bound to another provided value, then subtract the result of the

first from the second and print it. The Python solution to the

problem is given below:

>>> def evalwithx(code, a, b):

 return

 eval(code,{„x‟:b})-

 eval(code,{„x‟:a})

>>> evalwithx(„2 ** x‟, 3, 5)

24

D. JavaScript

The JavaScript solution to the problem discussed under Python is

presented below.

Function evalWithX(expr, a, b)

{

 var x = a;

 var atA = eval(expr);

 x = b;

 var atB = eval(expr);

 return atB atA;

E. Visual Basic

In Visual Basic the facility for runtime evaluation of expressions can

be implemented by making use of the ActiveX control known as the

Script control. This control comes with VB6 and all later versions of

Visual Basic.It can be downloaded from http://msdn.microsoft.com

/scripting (see [4], [5]).

3. INITIAL STEPS TO THE PROPOSED

NEW SOLUTION
The ideas leading to our solution to the problem of inputting

mathematical expressions at runtime is best understood by analyzing

a simple problem. These initial steps are discussed in this section. To

this end, we consider the following elementary problem:

“Compute and print the values of the expression x*x+x+1 for values

of x form 1 to 10 in increments of 2 in the form a table.”

Program 01 accomplishes the task. The sample output is also given.

Program 01

#include<stdio.h>

main()

{

float x; printf("\tx\t\tx*x+x+1\n"); for(x=1; x<=10; x=x+2)

{

printf("\t%f\t\t%f\n",x,x*x+x+1);

}

}

Program 01 : Output

x x*x+x+1

1.000000 3.000000

3.000000 13.000000

5.000000 31.000000

7.000000 57.000000

9.000000 91.000000

We now reformulate the code in Program 01 as in Program 02

below. Note the use of the preprocessor directive define.

International Conference on Information Systems and Technology (ICIST) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

29

Program 02

#include<stdio.h> #define F x*x+x+1; #define A 1.0 #define B

10.0 #define H 2.0 main()

{

float x; printf("\tx\t\tF\n"); for(x=A; x<=B; x=x+H)

{

printf("\t%f\t\t%f\n", x, F);

}

}

The four define statements in Program 02 are next put in a

separate file named definitions.c (see Program 03).

Program 03 (definitions.c)

#define F x*x+x+1; #define A 1

#define B 10

#define H 2

The code in Program 02 is further modified by replacing the four

define statements with a single include directive to include the

file

definitions.c. This modified code is given in Program 04.

We call the file containing this program background.c.

Program 04 (background.c)

#include<stdio.h>

#include"definitions.c”

main()

{

float x;

printf("\tx\t\t

F\n"); for(x=A;

x<=B; x=x+H)

{

printf("\t%f\t\t%f\n", x, F);

}

}

We next consider a program which will generate the file

definitions.c. While generating this file we input the

expression x*x+x+1 as a string. The necessary code is given as

Program 05. A sample output while running the program is also

given.

Program 05

#include<stdio.h>

main()

{

FILE *fun;

char xx[100];

char aaa[20], bbb[20], hhh[20];

int i;

 for(i=0; i<100; i++){

 xxx[i]=\0; }

for(i=0; i<20; i++)

 {aaa[i]=\0; bbb[i]=\0;

 hhh[i]=\0;}

 fun=fopen("definitions.c","w");
 system("clear");

 printf("\n Enter f(x)”);

 scanf("%s",&xxx);

 fprintf(fun,"#define F ");

 fprintf(fun,"%s",xxx);

 fprintf(fun,"\n");

 printf("\n Enter minimum of x:");

 scanf("%s",&aaa);

 fprintf(fun,"#define A ");

 fprintf(fun,"%s",aaa);

 fprintf(fun,"\n");

 printf("\n Enter maximum of x:");

 scanf("%s",&bbb);
 fprintf(fun,"#define B ");

 fprintf(fun,"%s",bbb);

 fprintf(fun,"\n");

 printf("\n Enter incr. in x: ");

 scanf("%s",&hhh);
 fprintf(fun,"#define H ");

 fprintf(fun,"%s",hhh);

 fprintf(fun,"\n");

 fclose(fun);

}

Program 05 : Sample output 1

Enter f(x):x*x+x+1

Enter minimum of x:1

Enter maximum of x:10

Enter incr. in x:2

After completion of the execution of Program 05, the programme

would have created a file named definitions.c with contents as in

Program 03.

4. DESCRIPTION OF THE METHOD
An analysis of the process described in the previous section will

show that the procedure involves two steps:

1. Compilation and execution of the program in Program 05. This

generates the file definitions.c.

2. Compilation and execution of background.c given in

Program 04. This generates the required output.

The crucial idea in the present method of inputting mathematical

expressions at run time is the possibility of creating a program

which incorporates the above two steps. To do this we compile and

execute background.c, the activity in the second step, while

executing the program in Program 05. This can be accomplished by

invoking the system command in two stages.

We have to invoke the compilation programme to accomplish the

task. The way the compilation programme is invoked depends on

the particular compiler being used. The GNU C compiler (GCC)

widely available with Linux distributions is discussed here. This

particular compiler is simple to apply in the present circumstances.

The standard directory structure associated with GNU/Linux

distributions makes accessibility of the compiler a simple matter.

International Conference on Information Systems and Technology (ICIST) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

30

5. IMPLEMENTATION
In the first stage, the program background.c is compiled

using the gcc compiler. Assuming that one is working in a Linux

operating system environment we may use the GNU C compiler

to accomplish this task by including the following line of code:

system("cc lm w o x.out ./background.c");

The switch lm is used to make available the functionalities and

libraries of the math.h header file. The switch w will suppress

any warning messages that may be generated at the time of

compilation. The output file will be named x.out.

In the second stage, the output file x.out is executed using the

following code (again assuming a Linux environment):

system("./x.out");

Before exiting the execution, a little cleaning up can be

performed. The files definitions.c and x.out may be

deleted. The program mathinput.c given in Program 06 is

derived from the program given in Program 05 by incorporating

the two changes suggested above.

Program 06 (mathinput.c)

#include<stdio.h>

main()

{

// Defining the variables FILE

*fun;

FILE *back; char

xx[100];

char aa[20],bbb[20],hhh[20]; int I;

// Initialising the strings

for(i=0;i<100;i++){xxx[i]=\0;}

for(i=0; i<20; i++)

{aaa[i]=\0;bbb[i]=\0;hhh[i]=\0;}

// Creating the file background.c

back=fopen("background.c","w");

fprintf(back,"#include<stdio.h>\n");

fprintf(back,"#include \

\"definitions.c\"\n");

fprintf(back,"main()\n"); fprintf(back,"{

\n"); fprintf(back," float x;\n\n");

fprintf(back, \" printf (\"\\t\\tx \\t

\\t\\t F\\n\");\ \n");

fprintf(back, \" for(x=A; x<=B; x=x+H)

\n"); fprintf (back,"{\n"); fprintf(back, \"

printf("\t\t %cf\t\t%cf \n", x, F); \

\n",37,37);

fprintf(back,"}\n");

fprintf(back,"}\n");

fclose(back);

// Opening the file definitions,c

fun=fopen("definitions.c","w");

// Cleaning up the monitor

system("clear");

// Inputting the mathematical

// expression and constants

// and writing these in

// the file definitions.c

printf("\n Enter maximum of x: ");

scanf("%s",&bbb);

fprintf(fun,"#define B ");

fprintf(fun,"%s",bbb);

fprintf(fun," \n");

printf("\n Enter increment in x:");

scanf("%s",&hhh); fprintf(fun,"#define H

"); fprintf(fun,"%s",hhh);

fprintf(fun," \n");

fclose(fun);

system("cc w lm -o x.out \

./background.c");

system("./x.out");

// Cleaning up;

// removing programme created files.

system("rm ./x.out");

system("rm ./definitions.c");

system("rm ./background.c");

}

Program 06 : Sample output

Enter f(x) : (exp(x)+exp(-x))/2.0

Enter minimum of x : 0

Enter maximum of x : 1

Enter increment in x : .2

x f(x)

0.0000 1.0000

0.2000 1.0201

0.4000 1.0811

0.6000 1.1855

0.8000 1.3374

1.0000 1.5431

6. CONCLUSION
This paper is concerned with writing a programme in C for

evaluating a mathematical expression supplied at the time of the

execution of the programme. We have explored how this problem is

solved in a few other languages. We have observed that the

generally accepted solution to the problem is to use specilalised

expression parsers. In this paper, however, we have presented an

elementary solution to the problem and illustrated it by presenting a

sample solution using the GNU compiler collection. The solution is

not fully satisfactory because it involves the invocation of the

compiler during the execution of the programme. Even though the

solution is not satisfactory, it illustrates the possibility of a solution

and this is pedagogically very illuminating. It helps to highlight the

use of the system command in the C command repertoire. More

work needs to be done to implement the facility for runtime

printf("\n Enter f(x):”);

scanf("%s",&xxx);

fprintf(fun,"#define F ");

fprintf(fun,"%s",xxx);

fprintf(fun,"\n");

printf("\n Enter minimum of x: ");

scanf("%s",&aaa);

fprintf(fun,"#define A ");

fprintf(fun,"%s",aaa);

fprintf(fun," \n");

International Conference on Information Systems and Technology (ICIST) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

31

evaluations of mathematical expressions in the C programming

environment.

Acknowledgement. A preliminary version of paper was

presented in the 2nd International Conference on Information

Systems and Technology, held at MES College of Engineering,

Kuttippuram, Kerala, India during 16, 17 May 2011. The authors

acknowledge with thanks the organizers of the Conference for

giving them an opportunity to present the paper in the

Conference. The authors are also grateful to the participants of

the Conference whose many constructive comments have helped

to develop the paper to the present form.

7. REFERENCES
[1] Sriram Srinivasan, Advanced Perl programming, OReilly

Media, Inc., 1997.

[2] Website dedicated to BBC BASIC:

http://www.bbcbasic.co.uk/bbcbasic.html

[3] Steven Holzner, Perl Black Book (2nd Ed.) Dreamtech

Press, 2004 (p.224).

[4] George Shepherd, ”Add Scripting to Your Apps with Mi-

crosoft ScriptControl”, MSDN Magazine, June 2000.

Available: http://msdn.microsoft.com/ en-us/ magazine/

cc302278.aspx

[5] Evangelos Petroutsos, Richard Mansfield, Visual Basic .NET

Power Tools, John Wiley and Sons, 2003 (p.463 464).

[6] Python v.2.7.1 documentation: The Python Standard

Library:2. Built-in Functions”. Available:

http://docs.python.org/library/functions.html#eval

[7] TbcParser Math Expression Parser 1.01 .

http://www.vclcomponents.com/ Delphi/Components

Collection/ TbcParser Math Expression Parser-info.html

[8] Marcin Cuprjak, ”„Evaluating Mathematical Expressions

byCompiling C# Code at Runtime”, April

2003.Available:http://www.codeproject.com

/KB/recipes/matheval.aspx

[9] A Function to Evaluate Arithmetic Expressions.

Available:http://www.parsifalsoft.com/examples/

evalexpression/ index.htm

[10] John McCarthy, Stanford University,”History of Lisp.” Febru-

ary 1979. Available: http://www-

formal.stanford.edu/jmc/history/lisp/node3.html

