
International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

5

Static Power Optimization for Reconfiguration of Hand

Held Devices

ABSTRACT
It has been widely seen that multimedia application has increased

in hand held devices such as mobile devices, cellular phones,

PDA’s , mobile audio / video player etc. These embedded devices

and applications need a huge amount of power to function

so improvement in power in these devices has turned out

an important issue. This paper presents a novel approach

for reducing the bit-width of the data used for the dynamic

reconfiguration of the hand held devices. Run time dynamic

reconfiguration of hand held devices to maximize power

according to user is a significant area for research. Remote

reconfiguration is possible only when Request Processing Time is

less. This is achievable only when majority of optimizations

is performed statically. The bit streams available after the

static analysis and preprocessing are used further for

dynamic optimizations which will greatly reduce the

runtime of the applications which further reduces the power

consumed by the devices. Thus the paper aims to propose

a new set of preprocessing algorithm in which the

variables are identified based on different usage patterns and the

generated bit stream is further compressed using the Huffman

compression and Dynamic Huffman Coding.

General Terms
Client-Server Model, Preprocessing Algorithm, Huffman

Compression, Dynamic Huffman Coding.

Keywords
Dynamic Reconfiguration, Request Processing Time, QIBO,

QDBO, Critical Variables, Non-Critical Variables.

1. INTRODUCTION

Mobile devices work with dynamism i.e. they have to deal with

the unpredicted network outage or should be able to switch to a

different network, without changing the application.

Reconfigurable systems have the potential to operate efficiently in

these dynamic environments [1]. Dynamic Reconfiguration allows

almost any customized design to be placed inside the hardware or

an existing design to be updated or modified [2]. Remote

reconfiguration is a strong solution for power optimization. There

are various proposed algorithms for power minimization, but the

only weak point in these algorithms is that the request processing

time is more than required. Request Processing Time is a

time required in sending the request, processing at remote

server, transmission of new bit stream to mobile

device and reconfiguration of mobile device as per the

requested quality (RqoS) must be less. Thus the proposed

paper exhibits a satisfactory real time solution for operational

performance of hand held devices [3].

Contributions: We therefore summarize the contributions of this

paper as:

1) Bit-width optimization performed using QIBO and QDBO.

2) Preprocessing algorithm applied to the resulting variables and

further compressed using Huffman compression algorithm.

3) Dynamic Huffman Coding has been compared with Static

Huffman coding for minimization of execution time of

preprocessed variables.

The remainder of the paper is structured as follows. We start by

introducing related work in Section 2. Next, Client-server model

of reconfigurable hand held framework is described in Section 3.

The Preprocessing Algorithm, which identifies the critical and

non-critical variables, is described in Section 4. In section 5

experimental results are shown before and after inclusion of

preprocessing algorithms using Huffman compression and

dynamic Huffman coding, conclusion is presented in Section 6,

Section 7 includes the future scope, Section 8 gives the

acknowledgement and finally in Section 9 references are

mentioned.

2. MOTIVATION AND RELATED WORK

Improving the efficiency of battery usage in hand held devices

(mobile devices) is a significant area of research. Some of

the known techniques include voltage scaling [4], variable

frequency of operation [1], battery aware task scheduling [3]

and dynamic power management [5]. Significant improvement in

battery efficiency is reported by using these power

management techniques for processor or ASIC based portable

systems. Another popular approach [6] for power minimization at

the same level is dynamic power management, which aims

to reduce power consumption of integrated circuits by

selectively shutting down idle components at any instant.

Extensive research has been carried out on power

optimization in high-level synthesis for ASIC designs [7, 8,

9]. It is customary to note that the dynamic

Shweta Loonkar
Department of Computer Engineering D.J.
Sanghvi College of Engineering Mumbai,

India

Lakshmi Kurup
Department of Computer Engineering D.J.
Sanghvi College of Engineering Mumbai,

India

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

6

reconfigurability character of FPGA opens several new avenues

for power optimization. Reconfigurability can actually be applied

at many layers in a system and at multiple levels of granularity, in

which each has its own preferred and optimal application domain

[10]. FPGAs are particularly useful for applications with bit-level

operations [11]. Bit width analysis and optimization of all

the operands and operators in any processing algorithm serve as

the foundation for data path optimizations in the low power

design flow [12]. Optimization of functional unit and data-

path width [13] statically and dynamically, also known as static

and dynamic bit-width optimizations, has been addressed in

various research works. Previous works [13], [12] show that

reduction of data-path width can substantially reduce the area and

energy required by the system, although the reduction of width

beyond a threshold limit may adversely affect the quality and

accuracy of processing output. Bit-width analysis and

optimization of all the operands and operators in any processing

algorithm serve as the foundation for data-path optimizations in

the low power design flow [14]. The fact that optimizing bit-

width of data-path for each given application is an effective

technique to reduce leakage power dissipation of the whole

embedded systems has been explored. Bit-width analysis is a

concept to circumvent the unnecessary bit computations by

determining the Bit-widths of operands and identifying the

unused and insignificant bits, defined and used in high-level

languages.

3. CLIENT SERVER MODEL OF

RECONGIFURABLE MOBILE

FRAMEWORK

The network view of framework explains that the client is

the mobile device user while remote server provides

the reconfiguration support to the user. Whenever user feels that

the device is running out-of-power, he, initiates the process

by selecting the required level of quality, which is then converted

to technical specifications by client model of the framework and

the parameters are sent to remote server through

communication network as shown in Fig 1. Server calculates the

new optimized design and extracts the reconfigured bit-stream,

which then sent to the client, reconfigures the device for reduced

power consumption and compromised quality. The accuracy is

reduced further till the limit of quality parameters is attained.

S

Figure 1 Client-Server Network Model Framework

In this paper it will be seen that often the most

efficient implementation of an algorithm in the reconfigurable

hardware is one in which the bit width of each internal variable

is fine-tuned to the best precision. Bit Width Optimization is done

in two

3.1 Quality Independent Bit Width

Optimizations (QIBO)

QIBO is performed as a static process i.e. it is done only once for

any source application and the results are stored for subsequent

use by Quality Driven Optimization phase. QIBO phase is

intended to remove the bits from Most Significant (MSB) and

Least Significant (LSB) ends of a variable that do not introduce

any error or inaccuracy. The QIBO is loss less approach.

Algorithm for QIBO is as:

1. Assigning zero to lsb_saving and msb_saving vectors.

2. Removing one bit from LSB and MSB end of any variable (i.e.

increasing the value of lsb_saving vector or msb_saving vector at

the position corresponding to the variable under consideration, by

one) and calculating the mean square error [15].

3. If MSE is found to be lower than the Min_Err value the

algorithm proceeds towards the removal of further next bit. The

process is repeated until the MSE remains lower than the

Min_Err.

4. Similar steps are repeated for MSB end.

5. Repeat the steps 1-4 for all n variables in the application.

3.2 Quality Driven Bit Width Optimizations

(QDBO)

The results of QIBO are made available for the QDBO at remote

server after receiving the required quality level from the client.

QDBO is a lossy approach and intends to enhance the statically

determined bit widths (determined through QIBO) by allowing

deterioration in quality up to an externally specified acceptable

level.

1. In this algorithm n is the total number of variables in the

application being optimized? The QDBO uses lsb_saving vector

from QIBO.

2. Removing one bit from LSB end of any variable (i.e. increasing

the value of lsb_saving vector at the position corresponding to the

variable under consideration, by one) and calculating the mean

square [15].

3. If MSE is found to be lower than the Min_Err value the

algorithm proceeds towards the removal of further next bit. The

process is repeated till the MSE remains lower than the Min_Err.

4. Repeat the steps 1-4 for all n variables in the application.

4. PREPROCESSING

To further reduce the preprocessing time of the variables obtained

from QIBO and QDBO, pre-processing algorithm has been

proposed in this paper. The overall aim of this paper can be stated

as “To generate an optimum bit stream, in response to desired

quality request from user, using Preprocessing and Huffman

Compression algorithms and Arithmetic Coding, which can

dynamically reconfigure the remote runtime of hand held

devices for improved power efficiency against quality

Reconfiguration

of Bit stream

Synthesis of

Configured Bit

stream

RQoS guided Bit

width optimization

Configuration

using Bit stream

Calculation by

RQoS parameters

RQoS guided Bit

width optimization

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

7

compromise”. In this framework source code of algorithm to be

optimized is preprocessed before applying QIBO and QDBO

(Figure 2).

Figure 2 Preprocessing at Remote Server

Initially variables are identified and their bit width is documented

(as per the language specification). E.g. source code to

be analyzed

Example 1:

d e f i n e W2 2 6 7 6

d e f i n e W6 1 1 0 8

x8 = x2 + x1;

i f (x0)

{x1 = W6*(x3+x2);

}

x2 = x1 − (W2+W6) * x2 ;

x3 = x1 + (W2−W6) * x3 ;

x1 = x4 + x6 ;

x4 −= x6 ;

f o r (k = 0 ; k < x7 ; k++)

{

x6 = x5 << x2 ;

}

Identified variables and their bit widths from above source code

are documented in the Table 1.

Table 1 Documentation of Variables and their Bit-widths

Table 1 data can be presented as Initial Variable Set (Vi).

Vi = {x0, x1, x2, x3, x4, x5, x6, x7, x8, W6, W2, k} (1)

|Vi| = n = 12 (2)
The optimization time requires by number of variables

in

algorithm as per eq. (3).

Execution Time = n *b where (3)

- n is the number of variables and

- b is the average bit width.

Therefore to reduce the execution time number of variables to be

analyzed should be reduced. During preprocessing, variables are

flagged as critical and non-critical. Critical variables are variables

whose accuracy must not be alerted in order to retain

functionality. These critical variables can be avoided in further

analysis to reduce the execution time. Their usage patterns can

identify critical variables. If variable

1. Participates in comparison statement.

2. is used to calculate at least 80% of output variables.

3. are of Boolean type.

4. are a type on which number of loop iteration depends?

By analyzing variables based on usage pattern some of the

variable in Vi can be identified as Critical Variable set (Vcvup)

Vcvup ={x0, x2, x7, k} (4)

|Vcvup| = m = 4 (5)

The Approximate Effective Variable Set (Vae) is

Vae =Vi−Vcvup (6)

Vae = {x1, x3, x4, x5, x6, x8, W6, W2} (7)

|Vae| = n−m = 12- 4 = 8 (8)

Example 2: For a statement x8 = W3*(x6+x7) the injected code

for virtual bit width reduction is

Mask(&x6) ;

Mask(&x7) ;

x8 = W3 * (x6 + x7)

Mask(&x8)

f u n c t i o n Mask (i n t * x)

{

i f (* x > 0)

*x = (* x & Ma s k Pa t t e r n) ;

e l s e

{

*x = −1 * *x ;

*x = (−1) *(* x & Ma s k Pa t t e r n) ;

}

}
Variable X0 X1 X2 X3 X4 X5 X6 X7 X8 W2 W6 k

Bitwidth 32 32 32 32 32 32 32 32 32 12 11 32

Algorithm

QIBO/QDBO

RQoS(Quality

Specifications)

Optimized Bit

Stream

Huffman

Compression

Mobile Device

user

Network

Preprocessing

Base Station

01001001

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

8

Now one variable from above set is chosen and usefulness of its

bits is verified. To verify usefulness, we inject some code to

reduce bit width virtually (during calculation a block of bits

is masked to produce an effect of bit width reduction). Masking

of block of bits can be done from LSB side. By masking we

reduce the precision of variable. Always block of bits is

masked and block of bits start from LSB as shown in Figure 3.

Advantages of masking process is that it provides a

simulation of bit width specific calculation at system level,

thus a great potential for considering feedback and power

saving without going to low- level.

Figure 3 Masking of Variables

The modified program is executed and output is observed. If

output is as accurate as with standard code, i.e. “Mean Square

Error (MSE)” remains less than the visualized error threshold

(MSE Minimum Threshold), the bits are flagged as unused. This

process is called “Error Contribution Analysis” and repeated for

every variable in Vae. Output of this process is “Error

Contribution Matrix”, as shown in Table 2. Here MSE is

calculated by adding difference i.e. error between all pixels of

produced original and new image as given by-

() (){ }2
1

0

1

0
2

,,'
1

jifjif
N

MSE
n

j

n

i

−= ∑∑
−

=

−

=

(9)

Here masked column shows the number of bits masked from LSB
Side and MSE introduced due to masking of bits. Thus we have

an error contribution matrix for all variables Vae set. If error

contribution of LSB bit is greater than threshold (TCriticalError)

then it can be flagged as critical variable.

Table 2 Error Contribution Matrix of Variable x0

Mas

ked

MSE Mas

ked

MSE Mas

ked

MSE Mas

ked

MSE

1 0 9 0.1362 17 191.453 25 1959.56

2 0 10 0.2352 18 393.053 26 1959.56

3 0 11 0.4259 19 859.466 27 1959.56

4 0 12 0.7683 20 1309.61 28 1959.56

5 0.0013 13 1.6258 21 1959.56 29 1959.56

6 0.0019 14 4.2247 22 1959.56 30 1959.56

7 0.0039 15 14.2902 23 1959.56 31 1959.56

8 0.0966 16 54.2229 24 1959.56 32 1959.56

E.g. in Table 3 error introduced due to masking of first LSB bit is

listed. Here value of TCriticalError is 10.0000 hence we can flag

x5 as critical variable.

Table 3 Error Contribution due to first bit for all variables of

Approximate Effective Variable Set (Vae)

By including all identified critical variables we can reduce Vae to

Effective Variable set (Veff). Veff calculated for above example is

Veff =Vae− {x5} (10)

Veff = {x1, x3, x4, x6, x8, W6, W2} (11)

|Veff | = 7 (12)

Thus preprocessing calculation takes significant time but as these

are static tasks, these make the dynamic process faster.

5. EXPERIMENTATION AND RESULTS

In this paper we have explored the preprocessing module in which

processing of variables are done on various usage patterns

mentioned above. In order to demonstrate the importance and

benefits of the quality independent and quality driven bit-width

optimizations in terms of performance and power consumption we

have analyzed Huffman compression and Dynamic Huffman

Coding in MPEG-2 decoding algorithm [16] has used.

5.1 Compression Using Huffman Algorithm

Compression is a technology for reducing the quantity of data

used to represent any content without excessively reducing the

quality of the image. It also reduces the number of bits required to

store and/or transmit the digital data (Figure 4).

Figure 4 Huffman Compression of Pre-processed variables

Huffman coding [17] is an entropy encoding algorithm used for

lossless data compression. Huffman coding uses a specific method

for choosing the representation for each symbol, resulting in

a prefix-free code [18] (that is, the bit string representing

some particular symbol is never a prefix of the bit string

representing any other symbol). Here our preprocessed sets of

variables are

{x1, x3, x4, x6, x8, W6, W2}. To generate a Huffman prefix code

we traverse the tree to the value we want, outputting a 0

every time we take a left-hand branch and a 1 every time we

take a right-hand branch shown in Figure 4. Each preprocessed

variable

Variable X0 X1 X3 X4 X5 X6 X8 W6 W2

Error 0.00 0.00 0.00 0.002 14.9632 0.0011 0.00 0.0016 0.0287

Variable(X)

Masked Variable(X2L)

32 31 30 . . 3 2 1

32 31 30 . . 3 X X

Optimized data received

by mobile device user

Cient Mobile

User(QIBO)

Preprocessing

Algorithm

Huffman

Compresion

Server Side

(QDBO)
RQoS+New

datastream

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

9

is an integer value i.e. 32*7=224 bits in length. Considering all

the leaf nodes the partial tree for our preprocessed variables can

be represented with 010001010110011011110, which is 21 bits

long. So in our case, use of Huffman codes saved 203 (224-21)

bits which is around 80-90% of the total preprocessed data shown

in Table 4).

Table 4 Pre-processed Variables and their Huffman Codes

5.1 Dynamic Huffman Coding

In this paper we have also done the analysis for Dynamic

Huffman coding [19] as the performance of dynamic coding

is better, even though the average code length of ordinary

Huffman code is less. The problem with static coding is that the

tree has to be constructed at the client side and sent to the

server. The tree may change because the frequency distribution

of the variables may change. Since the tree in dynamic coding

is constructed on the server side as well, there is no need to send

it again from the client side.

6

0
1

18

X1
5

1

5 0

13

W6 4
1

0

3 10

X6 3 1

0

3 7

X3 2
1

0

3 4

1 W2

1
0

2 2

X8
X4

1 1

Figure 5 Dynamic Huffman Code Tree

The paths from the root node to the leaf nodes define the code

word used for the corresponding symbol based on the tree

following code word are generated given in Table 4. Thus

the dynamic codeword for the preprocessed variable set is 27

bits long which is actually greater than the average code

length of general Huffman code. But as the code words are

generated dynamically at the server side, the transmission

delay and propagation delay can be reduced to a greater extent.

Table 5 Pre-processed Variables and their Dynamic Huffman

Codes

Pre-processed

Variable
Frequency Dynamic Huffman

Code Word
X8 1 111100

X4 1 111101

W2 2 11111

X3 3 1110

X6 3 110
W6 3 10
X1 5 0

6. CONCLUSION

Bit width analysis and compile time optimizations have emerged

as a key technique for power and performance aware

optimizations in future digital systems design. This paper

primarily targets to do a Critical Variable Partitioning using

Preprocessing Algorithm and Huffman compression algorithm to

minimize the total time taken in execution of a program and

thereby minimizing the power consumption. Comparative analysis

of dynamic Huffman coding with static Huffman coding

states that the former reduces transmission time to a greater

extent; even though the latter has a better average compression

rate .Reduced power consumption will result into increased

standby time of mobile devices.

7. FUTURE SCOPE

This work can be implemented using hardware accelerators in real

time application in order to reduce the Request Processing Time

of Mobile Devices.

8. ACKNOWLEDGEMENT

We are extremely thankful to Dr. Hiren Joshi for his help in

understanding and developing a concept of bit-width analysis and

power optimization in mobile devices and for their many

discussions and useful feedback in writing this paper.

9. REFERENCES

[1] Martin, T. L., Balancing Batteries, Power, Performance

System Issues in CPU Speed-Setting for Mobile Computing.

Ph.D. dissertation, Carnegie Mellon University (1999).

[2] Verma, S.S., Joshi, H., Sharma, G.K.: Quality Driven

Dynamic low Power Reconfiguration of Handhelds, In

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

10

Proceeding of International Workshop on Applied

Reconfigurable Computing, ARC 2006, Delft, Netherland

(March 2006).

[3] Luo, Jha, N.K., Battery-Aware Static Scheduling for

Distributed Real-Time Embedded Systems, In Design

Automation Conference, pp. 444–449 (2001).

[4] M. Pedram and Q. Wu, “Design Considerations for Battery-

Powered Electronics,” in Proceedings of the Design

Automation Conference, 1999, pp. 861–866.

[5] L. Benini, A. Bogliolo, and G. D. Micheli, “A Survey of

Design Techniques for System-Level Dynamic Power

Management,” in IEEE Trans. on VLSI Systems, vol. 8,

issue. 3, 2000, pp. 299–316.

[6] G.A.Paleologo, L. Benini, A. Bogliolo, and G. De Micheli.

“Policy Optimization for Dynamic power management”, In

DAC ’98: Proceedings of the 35th annual conference on

Designautomation, pages 182–187, New York, NY, USA,

1998, ACM Press.

[7] A. Raghunathan and N.K. Jha, “Behavioral Synthesis for

Low-power”, Proceedings of the 1994 IEEE International

Conference on Computer Design: VLSI in Computer &

Processors, pages 318–322, Washington, DC, USA, 1994,

IEEE Computer Society.

[8] P. Kollig and B.M. Al-Hashimi,“A New Approach to

Simultaneous Scheduling, Allocation and Binding in High-

level Synthesis”, in Proc. of IEEE Electronics Letters, vol.

33, Aug 1997.

[9] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey and

R.W.Brodersen, “Optimizing Power Using

Transformations”, in Proc. of IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 14, no. 1,pp.

12-31, Jan. 1995.

[10] Rabaey Jan M., “Reconfigurable Computing: The Solution to

Low Power Programmable DSP”, Proceedings 1997 ICASSP

Conference, Munich, April 1997.

[11] Gerard J.M. Smit, Paul J.M. Havinga, Lodewijk T. Smit,

Paul M. Heysters, Michel A.J. Rosien “Dynamic

Reconfiguration in Mobile Systems”, University of Twente

department of Computer Science Enschede, the Netherlands.

[12] H. Yamashita, H. Tomiyama, A. Inoue, F. N. Eko,

T.Okuma, and H. Yasuura, “Variable size analysis for data

path width optimization”. In APCHDL 98: Proceedings of

the Asia Pacific Conference on Hardware Description

Languages, pages 69–74, July 1998.

[13] S. Mahlke, Bit width Cognizant architecture synthesis of

custom hardware accelerators. In Computer-Aided Design of

Integrated Circuits and Synthesis, volume 20, pages 1355–

1371, November 2001.

[14] Yun Cao Hiroto, Leakage power reduction using bitwidth

optimization.

[15] J. Bins, B. Draper, W. Bohm, and W. Najjar, Precision vs.

error in jpeg compression, 1999.

[16] JPEG, Joint photographic experts group’s image

compression standard, http://www.jpeg.org.

[17] Pham, H.-A., Bui, V.-H., Dinh-Duc, A.-V., An Adaptive,

Memory-Efficient and Fast Algorithm for Huffman Decoding

and Its Implementation, In: ACM International Conference,

Proceedings of the 2nd International Conference on

Interaction Sciences: Information Technology, Culture and

Human, Seoul, Korea, vol. 403, pp. 275–279 (2009).

[18] Sharma, M., Compression Using Huffman Coding, IJCSNS

International Journal of Computer Science and Network

Security 10(5) (May 2010).

[19] Binary essence at:

http://www.binaryessence.com/dct/en000097.html

