
International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

19

Efficient Processing of XML Documents

Girish Tere
Department of Computer Science,

Shivaji University,
Kolhapur 416 004, India

Bharat Jadhav
Department of Electronics and Computer Science,

Y.C. Institute of Science,
Satara – 415 001, India

ABSTRACT

XML is now worldwide standards for data definition. The

standard of data transfer and exchange between organizations

through Web services has become exceedingly popular, especially

in electronic commerce. Web services are somewhat loosely

defined, but may be characterized in general as using existing web

technologies and standards to build the distributed computing

environments. Data transferred through web services is in the

form of XML. XML is universal language for information

exchange and has been used by many organizations for

developing enterprise applications. With the widespread adoption

of SOAP and Web services, XML-based processing, and parsing

of XML documents in particular, is becoming a performance-

critical aspect of business computing. There are connections

between Formal languages, Automata theory and XML. Finite

State Machines (FSM) provide a powerful way to describe

dynamic behavior of systems and components. XML has many

important features, including platform and language

independence, flexibility, expressiveness, and extensibility. To

improve web service performance, we have parsed XML

documents using Deterministic Finite Automata (DFA). DFA is

constructed to efficiently parse XML documents containing

SOAP messages by encoding the XML parser‟s states as a DFA.

In this paper we discuss our simple application and performance

results we obtained.

General Terms

Distributed Computing, Internet Programming

Keywords

Deterministic Finite Automata, SOAP, WSDL, XML documents.

1. INTRODUCTION
Use of Web services is mandatory in developing enterprise

application. Producer of Web services need to publish Web

service using WSDL and consumer of Web service need to search

the needed Web service and use the Web service as per the

contents of WSDL. WSDL documents are basically a contract for

using Web service. WSDL plays an important role in the overall

Web services architecture since it describes the complete contract

for application. Web services communicate to each other as well

as with client using WSDL contract defined in XML. This

communication is done by exchanging SOAP messages. SOAP

messages are basically XML documents. SOAP is an XML-based

messaging protocol. It defines a set of rules for structuring

messages that can be used for simple one-way messaging but is

particularly useful for performing RPC-style (Remote Procedure

Call) request-response dialogues. It is not tied to any particular

transport protocol though HTTP is popular. SOAP is an important

building block for developing distributed applications that exploit

functionality published as services over an intranet or the internet.

Many studies [7],[8],[9],[11],[15] have shown that the use of

XML can lower performance. XML primarily uses UTF-8 as the

representation format for data. Sending commonly used data

structures via standard implementations of SOAP incurs severe

performance overheads, making it difficult for applications to use

Web services. Due to the widespread adoption of standards in

Web services, it is critically important to investigate the impact on

performance for the kinds of XML used in web applications. The

flexibility and loose coupling of XML-based standards allows

senders and receivers of XML data to independently deploy

selected optimizations, according to the communication patterns

and data structures in use [6],[13]. SOAP has plus points like

transparency, expressiveness, platform and language

independence, extensibility and robustness. SOAP is a popular

choice as the common underlying protocol for interoperability

between Web services. These features facilitate the use of SOAP

in diverse applications with widely varying characteristics and

requirements. Clients and Web service endpoints can also add

optimizations in their implementations. The convergence of Web

services standards has made SOAP important, requiring the

evaluation of SOAP for data types and communication patterns

used by grid applications. It is thus important to have a test

framework to determine if a particular SOAP toolkit can meet the

performance requirements of an application, or if some other

communication protocol should be employed. Finite State

Machines (FSM) provide a powerful way to describe dynamic

behavior of systems and components. XML has many important

features, including platform and language independence,

flexibility, expressiveness, and extensibility [18],[19],[21]. Thus,

the combination of these characteristics with the interoperability

trait of Web services is an attractive way to design distributed

applications. For processing of XML documents, we have used

DFA based approach, as DFAs are executed faster on any

computer [10].

2. GENERATING DFA BASED PARSER
Parsing is the process of reading a document and dissecting it into

its elements and attributes, which can then be analyzed. In XML,

parsing is done by an XML processor, the most fundamental

building block of a Web application [18], [23]. All modern

browsers have a built-in XML parser. An XML parser converts an

XML document into an XML DOM object - which can then be

manipulated with a JavaScript. As the document is parsed, the

data in the document becomes available to the application using

the parser. This process is shown in Fig. 1. The XML processor

parses and generates an XML document. The application uses an

API to access objects that represent part of the XML document.

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

20

Fig. 1.. XML Parsing Process

We developed WSDL Processor [2],[11], which accepts WSDL

or Schema and generates source codes for the implementation of a

high-performance Web service as shown in Fig. 2. WSDL is an

XML-based language for describing Web services and how to

access them. A WSDL document is just a simple XML document.

It contains set of definitions to describe a web service.

Fig. 2. Parser Genrator

Fig. 3. Processing Web service

Many parsers are built using lexical analysis generators that

tokenize input into logical chunks, called as tokens [1],[3]. These

tokens act as input for the parser. These generators generally take

as input a collection of regular expressions matching each class of

token and actions that are executed when those tokens are

matched. This is explained in Fig. 3. Some of valid tokens are

elements, attributes and data. flex is a commonly used scanner

generator. flex transforms the collection of regular expressions

into a Non-Deterministic Finite Automaton (NFA) which

recognizes the union of the patterns[12]. This NFA is converted

into a DFA and then reduced. The DFA is written out as a table of

states of two dimensions, DFA state and character input. The

input is scanned by reading each character in input order, looking

up the current state and current input in the DFA table to find the

next state. Any required action is executed when the state

changes.

3. APPLICATIONS
Our example describes a parser for a repeatMessage

service in detail. Fig. 4 shows the schema/DTD of the

repeatMessage SOAP request message. The

repeatMessage message element contains a child

element message of type XSD string.

<schema

targetNamespace="urn:repeatMessage"

xmlns:xsd="http://www.w3.org/2001/XMLS

chema"

xmlns="http://www.w3.org/2001/XMLSchem

a">

<element name="repeatMessage">

<customType>

 <sequence>

<element name="message"

type="xsd:string"/>

<any namespace="##any" lowerlimit="0"

upperlimit="100"/>

 </sequomence>

</customType>

</element>

</schema>

Fig. 4. The repeatMessage Message Schema

The wsdlProcessor tool generates the Flex description

shown in Fig. 5. For this example, the PUSH and POP

operations are simply keeping track of the node nesting

level in the document. The level indicator is used for

controlling the DFA transitions. The source code of the

DFA generated by wsdlProcessor is shown in Fig. 6. The

yylex function returns the next token from the Flex

scanner shown in Fig. 5.

%{

#include "repeatMessageDFA.h"

#define PUSH level++;

#define POP level--;

%}

blank [\t\v\n\f\r]*

name [ˆ>/:= \t\v\n\f\r]+

qual {name}:|""

open <{qual}

close [ˆ>]*>

data [ˆ<]*

events

SOAP

message

Ws App

logic

SOAP

message

tokens ws_flex

scanner

ws_DFA

parser

ws.wsdl

WSDL

Processor

ws_DFA.c

ws_DFA.h

ws_flex.I flex
2.5.35

lex.yy.c

<?xml

version=”1.0”?>

<doc>

 <topic>XML

Parser

 </topic>

…

</doc>

XML

Processor

Parsing

Generation

A
ccessin

g

w
ith

D
O

M
/S

A
X

A
P

Is

Web

Application

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

21

%%

{blank} // ignore white space

{open}"?"{close} // ignore declaration

{open}"!"{close} // ignore comment

{open}"/"{close} POP

{open}"Header"{close} PUSH return HEADER;

{open}"Body"{close} PUSH return BODY;

{open}"repeatMessage"{close} PUSH return

ELEMENT_repeatMessage;

{open}"message"{close} PUSH return

ELEMENT_message;

{open}{name}"/"{close}

{open}{name}{close} PUSH

{data} return DATA;

<<EOF>> return EOF;

%%

Fig. 5. Flex Specification for repeatMessage

Fig. 6 shows the source code generated by WSDL Processor [2],

[10],[14]. The event("repeatMessage/message",

yytext)call returns an XPath expression and string data to the

server application.

int repeatMessageDFA()

{

 int token, state = 0;

 while ((token = yylex()) != EOF)

 {

 switch (state) {

 case 0: if (token == BODY && level == 2)

 state = 1;

 break;

 case 1: if (token == ELEMENT_repeatMessage &&

 level == 3)

 state = 2;

 break;

 case 2: if (token == ELEMENT_message && level

 == 4)

 state = 3;

 break;

 case 3: if (token != DATA || level != 4)

 return error("Invalid input

 value");

 event("repeatMessage/message",

 yytext);

 state = 4;

 break;

 case 4: if (token == EOF && level == 0)

 return ACCEPT;

 return error("Invalid message");

 }

 }

 return error("End of file");

}

Fig. 6. DFA for repeatMessage

4. PERFORMANCE ANALYSIS
Experiment were carried on Dell Inspiron Laptop with Intel Core

2 Duo, 4 GB RAM. We measured Web services performance on

the same machine, i.e. client and server was installed on the same

machine. The performance of the repeatMessage application is

compared to the performance of parser built with gSOAP 2.5.1

and the performance of eXPAT parser [11],[26]. This paper

shows the performance of the same repeatMessage application

with gSOAP 2.5.1 parser and the performance of Xerces2 XML

parser [20]. The performance of the Xerces2 parser is considered

to be good. Xerces2 Java is a library for parsing, validating and

manipulating XML documents. The gSOAP toolkit is an efficient

implementation of Web services standards in C and C++ [16],

[17],[26]. We changed the message string size n from 256, 512 to

1024 and repeated the experiment. Performance comparison of

these parsers with varied n is shown in Fig. 7, 8 and 9.

Performance analysis of the result obtained show that the

performance of DFA-based parser is better than other two parses

considered, viz. gSOAP and Xerces2. We have measured the

response time using Apache Jmeter software.

Fig. 7. Performance of parsing repeatMessage application with

n=256

Fig. 8. Performance of parsing repeatMessage application with

n=512

Fig. 9. Performance of parsing repeatMessage application

with n=1024

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

22

5. CONCLUSIONS
Many researchers tried to improve XML parsing. Web services

interact with client by exchanging SOAP messages and can be

used as per WSDL. Both SOAP and WSDL are basically XML

document. Therefore to improve Web services performance, we

tried to improve XML parsing work. XML parser has some finite

states. Therefore, we used DFA to effectively reduce

computational overheads for XML parsing of SOAP/XML

messages. The DFA is generated by a code generator that takes a

WSDL as input and generates codes for an optimized schema-

specific SOAP/XML message parser. We observed that the

performance of the DFA-based parser built with a scanner

produced with Flex is better than the performance of parser built

with gSOAP 2.5.1 and Xerces2 parser. However, we have not
considered processing of XML namespaces. For developing this

parser, we considered only ordered XML documents.

6. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman, “Compilers: Principles,

Techniques and Tools”, Addison-Wesley, 2nd ed, 2006.

[2] Aaron Skonnard, Understanding WSDL, Microsoft

Corporation, 2010, http://msdn.microsoft.com/en-

us/library/ms996486(printer).aspx, Accessed on 30th Aug

2010

[3] Abu-Ghazaleh N., Govindraju M., Lewis M. J., Optimizing

performance of web services with chunk-overlaying and

pipelined-send. Proceedings of the International Conference

on Internet Computing (ICIC), June 2003, 482–485.

[4] Apache Software Foundation, Xerces2 Java Parser,

 http://xml.apache.org/xerces2-j, Accessed on 23 July 2010

[5] A. Slominski, XML Pull Parser version 2.1.8.,

[6] C. Chan, P. Felber, M. Garofalakis and R. Rastogi,

“Efficient Filtering of XML Documents with XPath

Expressions”, In Proceedings of the International Conference

on Data Engineering, 2002.

[7] C. Kohlhof and R. Steele, “Evaluating SOAP for high

performance business applications: Real-time trading

systems”, In proceedings of the 2003 International WWW

Conference, Budapest, Hungary.

[8] D. Davis and M. Parashar, “Latency performance of SOAP

implementations”, In proceedings of the 2nd IEEE

International Symposium on Cluster Computing and the

Grid, 2002.

[9] Danny Chen, Raymond K. Wong, “Optimizing The Lazy

DFA Approach for XML Stream Processing”, The

Fifteenth Australasian Database, Conference (ADC2004),

Dunedin, New Zealand, Vol. 27, 2004

[10] F. Neven, “Automata theory for XML researchers”,

SIGMOD Record, 31(3), 2002

[11] Girish Tere, Bharat Jadhav, Improving Performance of XML

Web Services, ICTSM 2011, CCIS 145, pp. 91–98, 2011,

Springer-Verlag Berlin Heidelberg 2011

[12] K. Chiu, W. Lu, “Compiler-based approach to schema-

specific XML parsing”, First International Workshop on

High Performance XML Processing, New York, USA, May

17–22, 2004, ACM Press, 2004.

[13] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the

limits of SOAP performance for scientific Computing”, In

proceedings of the 11th IEEE International Symposium on

High-Performance Distributed Computing, 2002.

[14] Lei Li, Chunlei Niu, Ningjiang Chen, Jun Wei, "High

Performance Web Services Based on Service-Specific SOAP

Processor", IEEE International Conference on Web Services

(ICWS'06), 2006, pp 603-610

[15] M. Murata, D. Lee, and M. Mani, “Taxonomy of XML

schema languages using formal language theory”, In Extreme

Markup Languages, 2001.

[16] R. van Engelen, “Pushing the SOAP envelope with Web

services for scientific computing”, In proceedings of the

International Conference on Web Services (ICWS), pages

346–352, Las Vegas, 2003.

[17] R. van Engelen and K. Gallivan, “The gSOAP toolkit for

web services and peer-to-peer computing networks”, In 2nd

IEEE International Symposium on Cluster Computing and

the Grid, 2002.

[18] R. van Engelen, G. Gupta, and S. Pant, “Developing web

services for C and C++”, IEEE Internet Computing, March

2003, pp 53-61

[19] T. Green, G. Miklau, M. Onizuka, D. Suciu, “Processing

XML Streams with Deterministic Automata”, 9th

International Conference on Database Theory, Siena, Italy, 8-

10 January 2003.

[20] The Apache Xerces Project, http://xerces.apache.org/,

Accessed on 17th March 2011

[21] Welf M. Löwe, M. L. Noga and T. S. Gaul, „„Foundations

of Fast Communication via XML”, Annals of Software

Engineering 13, Nos. 1–4, 357–359 (June 2002).

[22] Wei Zhang, Robert A. van Engelen, “An Adaptive XML

Parser for Developing High-Performance Web Services”,

Fourth IEEE International Conference on eScience, 2008, pp

672-679

[23] Wei Zhang van Engelen, R.A., “High-Performance XML

Parsing and Validation with Permutation Phrase Grammar

Parsers”, ICWS '08. IEEE International Conference on Web

Services, 2008, Beijing, pp 286 – 294

[24] Wim Martens, Joachim Niehren, On the minimization of

XML Schemas and tree automata for unranked trees,

Journal of Computer and System Sciences, Vol 73 Issue 4,

June 2007

[25] XMLTK, The XML toolkit,

http://www.cs.washington.edu/homes/suciu/XMLTK/,

University of Washington, 2002, Accessed on 25 Aug 2010

[26] Wichaiwong, T. Jaruskulchai, C., A Simple Approach to

Optimize Web Services' Performance, Third International

Conference on Next Generation Web Services Practices,

NWeSP, Seoul 2007, pp 43-48

http://xerces.apache.org/
http://portal.acm.org/author_page.cfm?id=81100637439&coll=DL&dl=ACM&trk=0&cfid=://www.google.co.in/url?sa=t&cftoken=www.google.co.in/url?sa=t
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Wei%20Zhang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Robert%20A.%20van%20Engelen
http://portal.acm.org/author_page.cfm?id=81100096464&coll=DL&dl=ACM&trk=0&cfid=://www.google.co.in/&cftoken=www.google.co.in/
http://portal.acm.org/author_page.cfm?id=81100448425&coll=DL&dl=ACM&trk=0&cfid=://www.google.co.in/&cftoken=www.google.co.in/

