
International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

7

Automatic Generation of Test Cases from UML Models

 Vinaya Sawant
 Lecturer
 D.J. Sanghvi COE
 Mumbai

Ketan Shah
Associate Professor

MPSTME
NMIMS University, Mumba

ABSTRACT

The paper presents a novel technique to create the test cases from

UML models. In this technique, the UML diagrams such as Use

Case Diagram, Class Diagram & Sequence Diagram of any

application are considered for creating the test cases. A graph is

created to store the necessary information that can be extracted

from these diagrams & data dictionary expressed in OCL for the

same application. The graph is then scanned to generate the test

cases that are suitable for system testing.

Keywords

Testcases, UML Diagrams, OCL expressions

1. INTRODUCTION
Traditional testing has often generated tests from program source

code, usually by abstracting the program into control flow

diagrams, data flow graphs, call graphs, or other high level

representations. Techniques to derive tests from formal

specifications have also been developed. A more general term is

that of model-based testing, which generally creates tests from an

abstract model of the software, including formal specifications

and semi-formal design descriptions such as UML diagrams.

Automatically generating test cases directly from design models

has several benefits:

1) Test-case generation is a time-consuming task and

automating it saves resources.

2) The test cases can be generated before any code is written,

which will allow developers to use the test cases as they

develop the code. This reduces the number of iterations

between development and testing, further saving resources.

3) One major cause of software related accidents occurs when

requirements are miscommunicated to the developers or are

not delivered to them at all.

Test cases generated directly from system requirements can be

used to detect such errors, whereas most white-box test-generation

algorithms would have no means of doing so[9]. The Unified

Modeling Language (UML) is a collection of languages for

specifying, visualizing, constructing, and documenting the

artifacts of software systems [2]. Sequence

diagrams capture time dependent (temporal) sequences of

interactions between objects. Sequence diagrams describe

interactions among software components, and thus are naturally

considered to be a good source for integration testing.

The aim of system testing is to ensure that a fully developed and

integrated system is error free. System testing is often considered

to be the most complex and intricate among all types of testing. In

the grey box approach, system test cases are designed from design

documents. In recent years, Unified Modeling Language (UML)

[2] has emerged as the de facto standard for modeling software

systems and has received significant attention from researchers as

well as practitioners. The importance of UML models in

designing test cases has been well recognized.

Model Based Testing (MBT) is gaining its popularity in both

academia and in industry. As systems are increasing in

complexity, more systems perform mission-critical functions, and

dependability requirements such as safety, reliability, availability,

and security are vital to the users of these systems.

2. PROBLEM DEFINITON
The aim is to develop an automatic test case generation tool using

UML models. The sequence diagram is considered as a source of

test case generation. The generated test suite aims to cover

operational and use case dependency faults, various interaction as

well as scenario faults. For generating the different components of

a test case, i.e. input, expected output and pre- and post-condition,

use case diagram, class diagram, data dictionary in the form of

OCL expressions along with sequence diagram is considered. The

generated test cases can be stored separately in a different file for

future use.

3. THE PROPOSED APPROACH
Given a use case diagram (UD), class diagram (CD), sequence

diagram (SD), transform it into a representation called sequence

diagram graph (SDG) [1]. Each node in the SDG stores necessary

information for test case generation. This information are

collected from the use case template (also called extended use

case), class diagrams, and data dictionary expressed in the form of

object constrained language (OCL) [3], which are associated with

the use case for which the sequence diagram is considered. Then

traverse SDG and generate test cases based on a coverage criteria

and a fault model. A schematic diagram of the approach is as

shown in the fig 3.1[1].

Fig 3.1: Schematic Block Diagram for the proposed approach

Sequence

Diagram

Sequence Diagram

Graph

OCL

Expressions

Use Case

Diagram

Class

Diagram

Test Cases

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

8

4. IMPLEMENTATION WORK
The different UML tools that such as MagicDraw and Rational

Rose that has support for drawing UML diagrams as well as OCL

expressions can be used to draw the UML diagrams according to

the specification of any application that has to be considered.

These UML diagrams are then exported to XML format. The

process of exporting generates XML file from UML diagrams.

This file contains all the XML tags describing all the UML

diagrams. This XML file needs to be parsed to generate the graph.

The parser is written that reads XML file and generate the

different nodes for the graph by considering the sequence diagram

of an application. These nodes are then mapped into the different

scenarios according to the flow of messages in the sequence

diagram. The nodes of the graph stores the information such as

attributes of the corresponding objects at that state, arguments in

the method, and predicate of the guard if any, involved in the

interaction. The Use case template is also considered while

generating the test cases. The Use Case template provides the

information such as precondition & postcondition for a particular

scenario that has to be considered. The OCL syntax will be

followed to represent the data dictionary [3]. For the specification

of a test case, the test specification language according to the

IEEE Standard 829 is followed. Test cases generated will be

recorded in a temporary file for future references. The case study

for Bank ATM System is considered to generate the test cases.

The Use Case Diagram, Class Diagram and Sequence Diagram is

drawn which clearly gives the detailed description of the

application. These diagrams are drawn using Magic Draw tool.

Using the same tool, the diagrams are exported to XML format.

The parser has been written in java that reads XML file and

generates the different nodes of the graph. The sequence diagram

is scanned to identify the set of the scenarios from the start node

to end nodes. Now these set of scenarios along with Use Case

Template and OCL data dictionary need to be traversed to

generate the test cases. The generated test cases are recorded into

a separate temporary file.

5. CASE STUDY: BANK ATM SYSTEM
The case study of Bank ATM system is considered to show the

implementation work of the project. The Bank ATM system

allows user to perform login with authenticated PIN number. If

the user logs in with authorized PIN no, then the user is allowed

to do deposit the money in his bank account, withdraw money

from his bank account. He is able to check the balance and also

can request for the mini statement. The following are the steps

that need to be executed for generating test cases for the system

from the UML Design Diagrams [6].

The implementation for this is done using JAVA programming

language. The User Interface for the tool is provided so that on

clicking on the desired buttons, the different steps needed to

generate test cases can be easily done.

5.1 Step 1: Drawing UML Diagrams from the

problem statement
The Use Case Diagram, Class Diagram and Sequence Diagram for

the system are drawn to understand the system as a whole. The

UML diagrams are drawn using the MagicDraw tool since this

tool has the good support for OCL expressions as well as

compared to any other tool. The fig 5.1 represents the Sequence

Diagram for the Bank ATM System for withdraw money use case.

The UseCase Diagram, Class Diagram with OCL expressions are

also used for this tool.

5.2 Step 2: Generating XML File
The UML design tool has also the support for generating XML

file from the UML diagrams which are easily transportable

without installing the UML design tool. The MagicDraw Software

has the option of exporting the UML diagram to XML file. The

XML file thus generated contains the tags for all the properties of

the diagrams including the color properties that are not required

for generating the test cases. Thus, this XML file needs to be

edited according to the requirements for further processing. This

is one of the disadvantages of this method. Once the necessary

changes in the XML file is made, this XML file can be used as

input for the ATCUM (Automatic Test Case generation from

UML Models) tool for generating test cases. Using the ATCUM

tool, the option of opening the XML file is provided.

5.3 Step 3: Parsing XML File
The parser is written that reads XML file that is selected from the

previous step and gives the description about all the tags as well

as the attributes of every tags from the XML file. This information

will be useful for generating the description for the Sequence

Diagram Graph that contains the nodes which stores the necessary

information to generate scenarios.

The project makes use of a tree-based API (such as Document

Object Model, DOM) builds an in-memory tree representation of

the XML document. It provides classes and methods for an

application to navigate and process the tree [8].

Fig 5.1: Sequence Diagram of Bank ATM System

(Withdraw Money)

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

9

5.4 Step 4: Generating Scenarios
The input to this step requires the parsed XML file of the previous

step. The nodes for the graph are generated at this step. Each node

stores the information such as message passed between the two

objects, object that sends the message, the object that receives the

message, guard condition if any and the OCL expression of that

message [3]. Depending upon the message sent from one object to

another object, the number of nodes is determined. The sequence

diagram is then scanned again using the XML file to generate the

scenario which is nothing but the combination of different nodes.

Initially scenario begins with StateX. Then the message detail that

is in the form of node is added to the scenario. If the receiver

object is same as the sender object of the first node, then that

scenario is completed and finally ends with StateY or StateZ. In

this manner all the remaining scenarios from the sequence

diagram is determined. These scenarios are used as test cases for

the test case generator module. From the above sequence diagram,

two different scenarios can be generated. The following figure Fig

5.2 represent two scenarios from Bank ATM System for

Withdraw Money Use Case.

Fig 5.2: Output of Scenario Generation

5.5 Step 5: Display Graph
The graphical representation of the nodes starting from StateX to

StateY or StateZ is displayed in this frame. Initially all the nodes

of the first scenario is displayed, then after clicking on the button

one by one all the nodes of the remaining scenarios can be

displayed. Thus, the visual representation of the graph as well as

scenarios can be obtained on clicking the required button of the

ATCUM tool. The fig 5.3 represents the required graph for the

above sequence diagram.

Fig 5.3: Displaying Sequence Diagram Graph

5.6 Step 6: Test Set Generation
This step reads the different scenarios that are generated from the

previous step. Each scenario corresponds to test case. All the

paths from the start node to final node need to be scanned to

generate the test cases. The information that is stored in the nodes

is used to determine the input and expected output of the scenario.

The OCL expression plays a major role in determining the test

cases. Form the OCL expression, the precondition and the post

condition for a message can be determined. A message having the

guard condition and OCL expression is selected for generating the

test case. The following figure 5.4 represents the output of test

case set generation.

5.7 Step 6: Creating & Saving Temporary

File
The last step is to save the test cases generated from the previous

step in a temporary file for future reference. Also this file can be

used software testers to create the test plans for the desired

software. The temporary file can be saved with .txt extension so

that it can be easily available for other users. The following figure

fig 5.4 represents the text file.

6. CONCLUSION
The aim was to automatically generate test cases from UML

Models. To generate test cases various UML Diagrams are

considered such as Use Case Diagram, Class Diagram, Use Case

template, sequence diagram & also data dictionary using OCL.

The paper presents the methodology to convert the UML

sequence diagram into a graph called sequence diagram graph

(SDG). The information those are required for the specification of

input, output, pre- and post- conditions etc. of a test case are

retrieved from the extended use cases, data dictionary expressed

in OCL 2.0, class diagrams (composed of application domain

classes and their contracts) etc. and are stored in the SDG. The

approach provides an ATCUM tool that straightway can be used

to automate testing process. The approach does not require any

modification in the UML models or manual intervention to set

input/output etc. to compute test cases. A graph based

methodology is followed and run-time complexity is governed by

the breadth-first search algorithm to enumerate all paths. In fact

deciding test data, which are embedded in design artifacts, is

contents of scenario:1:

<stateX>

S1: null cardinserted :SessionManager :CardReader uml:Message

S2: null selectWithdraw :DisplayManager :SessionManager

uml:Message

S3: null requestAmount :DisplayManager :SessionManager

uml:Message

S4: null reply amt_vlaue :SessionManager :DisplayManager

uml:Message

S5: null verifyAmount :KeyReader :SessionManager uml:Message

S6: Invalid Amount eject :CardReader :SessionManager uml:Message

context CardReader::eject();pre: SessionManager.amount="Invalid

Amt";post: result="eject card & Displays Welcome Message" OCL2.0

uml:OpaqueExpression

<StateY>

contents of scenario:2:

<stateX>

S1: null cardinserted :SessionManager :CardReader uml:Message

S2: null selectWithdraw :DisplayManager :SessionManager

uml:Message

S3: null requestAmount :DisplayManager :SessionManager

uml:Message

S4: null reply amt_vlaue :SessionManager :DisplayManager

uml:Message

S5: null verifyAmount :KeyReader :SessionManager uml:Message

S7: Valid Amount checkBal :Bank :SessionManager uml:Message

context Bank::checkBal();pre: SessionManager.amount="Valid

Amt";post: result="Check the balance & " OCL2.0

uml:OpaqueExpression

S8: Insufficient Amount eject :CardReader :SessionManager

uml:Message context CardReader::eject();pre:

SessionManager.amount="Insufficient Amt";post: result="eject card &

Displays Welcome Message" OCL2.0 uml:OpaqueExpression

<StateY>

International Conference on Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

10

computationally intensive task and the approach significantly is

able to score in this issue.

 Fig 5.4: Test Cases Generation

7. REFERENCES
[1]. Monalisa Sarma, Debasish Kundu, Rajib Mall, “Automatic

Test Case Generation from UML Sequence Diagrams”,

Department of Computer Science & Engineering, IIT

Kharagpur, IEEE 2007

[2]. Peter Frohlick and Johannes Link, “Automated Test Case

Generation from Dynamic Models”

[3]. Object Constraint Language 2.0 is available from Object

Mangement Group’s web site http://www.omg.org/

[4]. J. D. McGregor, and D. A. Sykes, “A Practical Guide to

[5]. Testing Object-Oriented Software “, Addison Wesley, NJ,

2001.

[6]. A. Abdurazik, J. Offutt., “Using UML Collaboration

Diagrams for static Checking and Test Generation”,

Proceedings of the Third International Conference on the

UML

[7]. A Rational Approach to Software Development using

Rational Rose 4.0, IBM’s Rational Rose,

http://www.ibm.com/

[8]. Monalisa Sarma, & Rajib Mall, “System Testing using UML

models”, Department of Computer Science & Engineering,

IIT Kharagpur, 16th IEEE Asian Test Symposium

[9]. W3 school available at:

http://www.w3schools.com/dom/dom_node.asp

[10]. C. Nebut, F. Fleurey, Y. L. Traon, and J. Jean-Marc,

“Automatic Test Generation: A Use Case Driven Approach”,

IEEE Transaction on Software Engineering, Vol. 32, No. 3,

2006

Test Case Generation

PreCondition : ATM card is valid and User selects Withdraw option

Test Scenario:Invalid Amount

Output:context CardReader::eject();pre:

SessionManager.amount="Invalid Amt";post: result="eject card &

Displays Welcome Message"

Input: amount="Invalid Amt"

Output: "eject card & Displays Welcome Message"

Test Scenario:Insufficient Amount

Output:context CardReader::eject();pre:

SessionManager.amount="Insufficient Amt";post: result="eject

card & Displays Welcome Message"

Input: amount="Insufficient Amt"

Output: "eject card & Displays Welcome Message"

Test Scenario:Sufficient Balance

Output:context Bank::debit_acct()pre: SessionManager.amount="

Valid" and Bank.bal="sufficient";post: result="Amount Withdraw

Successfully & Menu for Transaction "

Input: amount=" bal="sufficient";post:

Output: "Amount Withdraw Successfully & Menu for Transaction "

PostCondition : Amount Withdraw Successfully

