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ABSTRACT 

Classification of polarimetric SAR images has become a very 

important topic after the availability of Polarimetric SAR images 

through different sensors like SIR-C, ALOS-PALSAR etc. In this 

paper we studied effect of different decomposition techniques on 

the classification accuracy for polarimetric SAR data. We applied 

different target decomposition techniques (both coherent and 

incoherent) on ALOS-PALSAR data over Sunderban, West 

Bengal district of India and later classified the data using various 

classification techniques. The same training areas are used for 

classification of decomposed images. A comparative study has 

indicated that Van Zyl decomposition gives better classification 

accuracy than other decomposition techniques. It is also observed 

that the H-A-Alpha decomposition along with the volume 

scattering Fv or Vv from the volume scattering component from 

Freeman and the VanZyl decomposition contributes a significant 

part to the improvement of classification. The accuracy for H-A-

Alpha classified image is improved from 76.4% to 95.6% and to 

96.2% after combining the volume scattering component from 

Freeman decomposition and Vanzyl decomposition respectively. 

The accuracy is further improved to 97% when the odd bounce 

component is combined along with volume scattering to H-A-

Alpha for both the decompositions. It is observed that among the 

different classifiers applied, Maximum Likelihood Classifier gives 

highest accuracy. 

Categories and Subject Descriptors 

I.4.6 Image Processing and Computer Vision 

General Terms 
Algorithms, Measurements, Performance. 

Keywords 
Radar polarimetry, polarization, synthetic aperture radar, wetland, 

target decomposition, speckle, classification.  

 

1. INTRODUCTION 

Classification of polarimetric SAR images has become a very 

important topic after the availability of Polarimetric SAR images 

through ENVISAT ASAR, ALOS PALSAR, SIR-C and Radarsat-

2. Classification is the task of assigning a set of given data 

elements to a given set of labels or classes such that the cost of 

assigning the data element to a class is minimum. Radar 

polarimetry is a well-established technique for classification of 

land use features. It has also become an  

 

 

important and cost-effective tool for wetland investigation and 

researches. Wetlands are under pressure due to high demand for 

land development for housing and agriculture. Most of mangrove 

forests were cleared for settlements, agriculture and fire wood. It 

is important to manage the wetlands and conserve them for the 

benefit of the society, flora and fauna.  Remote  sensing  is very  

useful  tool  to map  the  wetlands  and  classify  them. Synthetic 

aperture radar technology is an advantage over optical   remote   

sensing   due   to   microwave   penetration through   vegetation   

and   interaction   with   water   under vegetation.  The major steps 

of image classification may include determination of a suitable 

classification system, selection of training samples, image 

preprocessing and feature extraction, and selection of suitable 

classification approaches, post-classification processing and 

accuracy assessment. In this paper different target decomposition 

techniques are used before applying classification techniques. 

Same training sites are used for all the decompositions to do the 

comparative study of the results. 

The objective of Target decomposition (TD) theory is to express 

the average scattering mechanism as the sum of independent 

elements to associate a physical mechanism with each component. 

There are two types of TD. One is Coherent (CTD) and other is 

Incoherent (ICTD).  

CTD was developed to characterize completely polarized 

scattered waves for which fully polarimetric information is 

contained in the scattering matrix. The CTD can be used only to 

study coherent targets also known as point or pure targets. Man-

made objects are the example of pure targets. Pauli, Krogager, 

Cameron are the Coherent type of decomposition. In this paper we 

have used Krogager decomposition. Krogager is also known as 

SDH decomposition because the scattering matrix can be 

represented as the combination of the response of sphere, diplane 

and helix. Helix scattering is a general scattering mechanism 

which appears in an urban area whereas disappears for almost all 

natural distributed scattering. It can distinguish man-made target 

from natural targets well but cannot divide one type of man-made 

target from another kind.  

The scattering matrix is only able to characterize coherent or pure 

scatterers. However the matrix cannot characterize distributed 

scatterers (natural targets). ICTD was developed to characterize 

distributed scatterers. In this paper we have used Freeman, Van 

Zyl and Yamaguchi which are the types of ICTD. Freeman and 

Van Zyl has three types of scattering mechanisms namely volume, 

double bounce and surface or single bounce. Yamaguchi 4- 

component has one additional scattering mechanism that is helix. 

Helix scattering often appears in complex urban areas where as 

disappears in almost all natural distributed scenarios.  
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2. POLARIMETRIC DECOMPOSITION 
The target decomposition was first introduced by Chandrasekhar 

(1960) [1] and later applied to polarized microwave by Huynen 

(1970) [2]. Coherent decomposition theorems use [S] matrices. It 

considers a matrix [S] as a linear combination of several other 

scatterers. A method for coherent target decomposition was 

presented by Krogager, 1988 [3]. His approach was based on the 

observation that any complex, symmetric scattering matrix can be 

decomposed into three components, as if the scattering were due 

to a sphere, a diplane and a right or left rotating helix. A three-

component scattering model for polarimetric SAR data is 

proposed by Freeman and Durden (1998) [4].  Cloude et.al. (1995, 

1996) [5] have suggested the H-A-alpha target decomposition 

theorem. Van Zyl (1989) [6] describes the use of an imaging radar 

polarimeteric data for unsupervised classification of scattering 

behavior by comparing the polarization properties of each pixel in 

an image to that of simple classes of scattering such as even 

number of reflections, odd number of reflections, and diffuse 

scattering. Coherent target decomposition methods can only be 

applied to coherent scattering. Generally, the scattered wave is 

partially polarized and the user might be interested in the 

extraction of geophysical parameters from an area that exhibits 

significant natural variability in the scattering properties (Van Zyl, 

1992) [7]. For different target decomposition methods Alberga et 

al. (2004) [8] has applied Minimum Distance, Maximum 

Likelihood and Parallelepiped classifier. A four-component 

scattering model is proposed by Yamaguichi et al., 2005 [9] to 

decompose polarimetric synthetic aperture radar images. Circular 

polarization power is added as the fourth component to the three 

component scattering model which describes surface, double 

bounce, and volume scattering. This circular polarization term is 

added to take into account of the co-pol and the cross-pol 

correlations which generally appear in complex urban area 

scatttering and disappear for natural distributed scatterer. Wang, 

et.al (2009)[10] proposed a method of unsupervised classification 

of polarimetric SAR data based on image clustering and H/A/α 

decomposition. Fully polarimetric L band data collected by ALOS 

PALSAR system was used in this paper. The relation between 

physical structure and polarimetric signal properties is studied 

explicitly using polarimetric decomposition [16]. The „H/A/α‟ 

decomposition theorem is the basis for the design of the proposed 

processing scheme for polarimetric SAR images. An improved 

land-cover classification based on this indicates the scattering 

properties of target classes very well and hence can be used to 

produce a much more improved classification result. The volume 

scattering Fv from the Freeman decomposition contributes a 

significant part to the improvement of classification. A 

comparison of polarimetric target decomposition methods is 

proposed by Zhang et.al. (2008) [11]. Results show that among 

many target decomposition algorithms, the coherent and 

incoherent formulations are quite comparable in distinguishing 

natural targets and man-made buildings. Pauli decomposition, 

Cameron decomposition and Freeman decomposition are suitable 

for the detection of natural targets. On the other hand, SDH 

decomposition, OEC decomposition, and Four-component model, 

in particular, are very useful for man-made target extraction. The 

Touzi decomposition is investigated for wetland characterization 

[12].  A target scattering decomposition was investigated by Touzi 

et. al. (2009) [13], for wetland classification. The Touzi 

decomposition, which permits a roll-invariant target scattering 

decomposition, leads to the characterization of wetland classes in 

terms of unique target parameters. Ballester-Berman et. al. (2010) 

[14] proposed a procedure for exporting the Freeman–Durden 

PolSAR TD concept to PolInSAR data. The formulation of the 

Freeman–Durden decomposition has been adapted to PolInSAR in 

order to jointly retrieve not only the magnitude but also the 

interferometric phases (related to the vertical locations) of the 

direct (odd-bounce), double-bounce, and volume scattering 

mechanisms. 

3. TEST SITES AND DATA SOURCES 
ALOS PALSAR data in fully polarimetric mode was acquired 

over Sunderban, West Bengal district of India on May 21, 2007. 

Close to the area covering Gangetic plains with agriculture is also 

acquired by ALOS PALSAR on May 21, 2008. 

Sunderban is a part of the world's largest mangrove forest. It is 

located in southern West Bengal. Lothian Island Wildlife 

Sanctuary lies south of Sunderbans in South 24 Parganas District, 

West Bengal. This 2,585-sq km park is the world's largest 

mangrove forest. Named after the Sundari trees, once found in 

large quantities here, the park features an extremely diverse array 

of vegetation and plant life, as well as houses an astounding 

variety of wildlife. It is the home of the endangered Royal Bengal 

tiger. In addition to the tigers, the sanctuary is also home to other 

wild and marine life, including wild boars, macaques, jungle cats, 

chitals, monkeys, Olive Ridley turtles, dolphins, sea snakes, king 

cobras and estuarine crocodiles to name a few. 

4.  DATA PROCESSING 
The target decomposition techniques are applied with the help of 

PolSARPro software on ALOS-PALSAR Sunderban area. The 

software creates files one file for each scattering mechanism for 

example for Freeman decomposition it creates three files namely 

Freeman_dbl.bin, Freeman_vol.bin, Freeman_odd.bin for double 

bounce, volume scattering and odd bounce scattering respectively. 

These three files are separately processed using ENVI software. 

Further the three files are combined to form one file: 

Freeman_dbl_vol_odd. This file is further processed by different 

classifiers namely Minimum Distance Classifier (MDC), 

Maximum Likelihood Classifier (MLC), Parallelepiped and 

Mahalanobis. The chosen algorithms implement quite general 

image classification methods and are not specifically intended for 

SAR data; hence they are not the optimal tools for analyzing 

them. Since these classifiers are the simpler approaches and are 

available to wide array of potential users, it would be the method 

of choice. The same procedure is done for all the decompositions. 

5. RESULTS 
After applying the decompositions, different classification 

techniques are applied using ENVI. Table 1 show the 

classification accuracy of various features for three separate 

components of Freeman and Van Zyl decomposition namely 

Double, Volume and Odd or Single bounce. From figures 1, 2 and 

the table no 1 it is clearly seen that Van Zyl decomposition gives 

better accuracy than Freeman decomposition. For double bounce 

scattering Van Zyl gives 20% more accuracy than that of 

Freeman. From the results of both the decompositions, it is clearly 

seen that wetland gives odd bounce scattering and mangrove gives 

volume scattering.  Figure 1 and 2 shows the classified images 

using Freeman and Van Zyl decomposition respectively. Figure 1 

(a) and figure 2 (a) are the decomposed images before 

classification. In this red color shows double bounce, green shows 

volume scattering and blue shows odd bounce scattering. Figure 1 

and 2 (b)-(e) shows the classified images after applying different 

classifiers namely Minimum Distance (MDC), Mahalanobis, 
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Parallelepiped and Maximum Likelihood (MLC) respectively. 

Table 2 (a)-(e) shows confusion matrices for ALOS/PALSAR 

Sunderban area computed after applying Minimum distance 

classifier for different decompositions. Table 3 gives comparison 

of classification accuracies for different decompositions for 

different classifiers.  

After comparing the results with other decomposition techniques 

like Freeman, Krogager, Yamaguchi-3 and -4 components it is  

found that Van Zyl decomposition gives the best results than all 

these decomposition techniques.  

The classification accuracy for mangrove is highest (93.55%) in 

case of Van Zyl which is much more than all other decomposition. 

The results are verified by using different classifiers like 

Mahalanobis, Parallelepiped, MDC and MLC. The result for ML 

classifier is the best among all the classifiers.  

 

 

Table 1: Classification accuracy for double, volume and odd bounce scattering.  (a) Freeman (b) Van Zyl 

 

 Double Volume Odd 

Accuracy 52.80% 61.94% 41.72% 

Mangrove 12.83 81.07 26.62 

Water 86.79 34.59 28.21 

Agri-bare 21.2 98.08 83.17 

Veg+village 57.3 83.02 25.48 

Wetland 1.42 55.38 92.02 

(a) 

 Double Volume Odd 

Accuracy 71.51% 63.23% 46.14% 

Mangrove 74 90.05 70.94 

Water 79.83 37.39 34.7 

Agri-bare 71.38 85.28 47.26 

Veg+village 63.46 78.97 26.02 

Wetland 13.78 79.59 99.94 

(b) 

 

 
               (a)                (b)                  (c)                   (d)                 (e) 

Figure 1: Classified images for Freeman decomposition (a) Freeman_dbl_vol_odd_db (before classification) Red = double bounce, 

Green = volume scattering, Blue = odd or single bounce (b) Minimum distance classified image (c) Mahalanobis classified image (d) 

Parallelepiped classified image (e) Maximum likelihood classified image 

 
                 (a)                (b)                  (c)                  (d)                  (e) 

Figure 2: Classified images for Van Zyl  decomposition (a) Van Zyl3_dbl_vol_odd_db (before classification (b) Minimum distance 

classified image (c) Mahalanobis classified image (d) Parallelepiped classified image (e) Maximum likelihood classified image 

Table 2: Confusion matrices for ALOS-PALSAR Sunderban area 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 64.98 0 0 11.39 0.26 12.88 

Water 0 96.17 1.13 0 0.64 44.07 

Agri-bare 0.59 3.81 98.85 0.24 0.07 20.82 

Veg+Village 34.43 0 0.02 88.37 0 16.66 

Wetland 0 0.02 0 0 99.03 5.56 
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(a) Freeman 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 93.55 0 0.15 8.37 0.06 17.6 

Water 0 99.9 2.49 0 0.58 46.03 

Agri-bare 0.06 0.06 97.36 0.06 0.26 18.72 

Veg+Village 6.38 0 0 91.57 0 12.07 

Wetland 0 0.04 0 0 99.1 5.58 

(b) Van Zyl 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 40 9.16 4.65 4.32 1.74 12.76 

Water 13.16 54.45 28.19 9.4 1.55 33.75 

Agri-bare 10.48 33.28 35.03 13.75 0.32 25.39 

Veg+Village 36.35 1.21 32.01 72.5 0 21.79 

Wetland 0.02 1.89 0.11 0.03 96.39 6.3 

(c) Krogager 

 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 56.52 0 1.17 19.16 0.06 12.53 

Water 0 91.15 11.76 0.03 3.03 43.96 

Agri-bare 7.55 7.86 86.07 5.44 0.13 22.08 

Veg+Village 33.69 0 0.94 74.86 0 15.09 

Wetland 2.24 0.98 0.06 0.51 96.78 6.35 

(d) Yamaguchi_3 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 9.81 0 0 8.16 3.86 2.93 

Water 5.57 86.85 23.89 2.48 49.26 48.2 

Agri-bare 66.76 9.8 69.96 71.41 0.26 38.25 

Veg+Village 9.04 3.35 6.14 13.12 3.54 6.07 

Wetland 8.83 0 0 4.84 43.08 4.56 

(e)Yamaguchi_4 

 

Table 3: Classification accuracies for different decompositions for different classifier 

 

Classifier Freeman Van Zyl3 Krogager Yamaguchi3 Yamaguchi4 

Minimum Distance 90.39% 97.25% 52.68% 82.41% 48.51% 

Mahalanobis 84.53% 85.64% 72.34% 77.14% 60.87% 

Parallelepiped 74.50% 89.27% 34.16% 69.22% 46.91% 

Maximum Likelihood 96.83% 97.84% 80.98% 85.44% 71.52% 

   

As discussed before ICTD is giving better accuracy for this type 

of data set since it has more natural or distributed scatterers than 

pure scatterers. Yamaguchi 4 gives poor classification accuracy. 

The 4th helix scattering component Pc in Yamaguchi 4 

decomposition becomes minor contribution for the natural 

distributed target area [15].  

The H-A-Alpha decomposition is applied on the polarimtertic 

Sunderban data set. The three components entropy, anisotropy 

and alpha are combined to form one binary file “h_a_alpha.bin”. 

Maximum Likelihood classification technique is applied on this 

file using ENVI. Wang, et.al (2009) [10] used volume scattering 

(Fv) component to further refinement of the classification due to 

its ability to reflect the mechanism of targets. High value of Fv 

suggests strong volume scattering and lower value of Fv often 

indicates strong surface scattering. Figure 3 shows four 

parameters entropy, anisotropy, alpha and Fv images which are 

combined to get better classification results. Figure 4 shows the 

H-A-Alpha, H-A-Alpha with Fv and H-A-Alpha with Vv 

classified images and the corresponding confusion matrix is 

given in table no 3. The classification accuracy increases from 
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76% to 95% after combining the volume scattering component 

with H-A-Alpha. 

Figure 5 (a) and (b) shows the classified images for H-A-Alpha 

with volume and odd bounce scattering component.  
The classification accuracy is given by the confusion matrix 

shown in table no. 4. The Accuracy is further increased from 

95% to 97% after adding the odd bounce component. When all 

the three components (volume, odd and double bounce) are 

combined with H-A-Alpha it is observed that the accuracy is 

further increased to 98%. 

       

 
    (a) H                 (b) A            (c) Alpha           (d) Fv 

Figure 3: Parameters Entropy (H), Anisotropy (A), Alpha and Volume scattering (Fv) 

 

 
1: Mangrove, 2: Water, 3: Agri-bare, 4: Veg+Village, 5: Wetland 

Figure 4: Maximum likelihood classified images (a) H-A-Alpha (b) H-A-Alpha+Fv (c) H-A-Alpha+Vv 

Table 3: Confusion matrix (Fv: Freeman volume scattering, Vv: VanZyl volume scattering) 

 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 79.73 0 0 29.74 7.92 18.12 

Water 0 76.03 17.05 0.03 0 37.91 

Agri-bare 0.06 23.97 82.87 0.6 0.45 26.92 

Veg+Village 14.95 0 0.02 60.14 9.4 10.37 

Wetland 5.26 0 0.06 9.49 82.23 6.69 

Total 100 100 100 100 100 100 

(a) Overall accuracy= 76.4438% Kappa =0.6762 for classified H-A-Alpha  

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 93.39 0 0 9.13 0.77 17.67 

Water 0 96.16 1.34 0 0.06 44.07 

Agri-bare 0 3.84 98.53 0.03 0.39 20.66 

Veg+Village 6.61 0 0.13 90.84 0.26 12.07 

1 2 3 4 5 
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Wetland 0 0 0 0 98.52 5.53 

Total 100 100 100 100 100 100 

(b) Overall accuracy =95.62% Kappa = 0.9384 for classified H-A-Alpha+ Fv 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 95.33 0 0 6.17 0.64 17.65 

Water 0 96.13 1.66 0 0.06 44.12 

Agri-bare 0 3.87 98.21 0.03 0.39 20.61 

Veg+Village 4.67 0 0.13 93.8 0.32 12.08 

Wetland 0 0 0 0 98.58 5.53 

Total 100 100 100 100 100 100 

(c) Overall accuracy= 96.25% Kappa= 0.9472 for classified H-A-Alpha+  Vv 

 

 
                                                                        (a)                                       (b)  

 

1: Mangrove, 2: Water, 3: Agri-bare, 4: Veg+Village, 5: Wetland 

Figure 5: Maximum likelihood classified images (a) H-A-Alpha+Fv+Fo (c) H-A-Alpha+Vv+Vo 

 

Table 4: Confusion matrix (Fv: Freeman volume scattering, Fo: Freeman odd bounce scattering,Vv: VanZyl volume scattering, 

Vo: Vanzyl odd bounce scattering) 

Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 95.64 0 0 4.62 0.58 17.52 

Water 0 98.41 0.96 0 0.19 45.04 

Agri-bare 0 1.59 98.94 0.03 0.19 19.7 

Vegitation 4.36 0 0.09 95.35 0.26 12.2 

Wetland 0 0 0 0 98.78 5.54 

Total 100 100 100 100 100 100 

(a) Overall accuracy =97.68% Kappa= 0.9672 for classified H-A-Alpha+Fv+Fo 

 

 

1 2 3 4 5 
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Class Mangrove Water Agri-bare Veg+Village Wetland Total 

Mangrove 96.02 0 0 3.54 0.52 17.46 

Water 0 98.37 1 0 0.13 45.02 

Agri-bare 0 1.63 98.91 0.03 0.26 19.72 

Vegitation 3.98 0 0.09 96.43 0.26 12.26 

Wetland 0 0 0 0 98.84 5.54 

Total 100 100 100 100 100 100 

(b) Overall accuracy =97.85% Kappa= 0.9697 for classified H-A-Alpha+Vv+Vo 
 

6. CONCLUSION 
Different target decomposition techniques have been applied on 

ALOS-PALSAR Sunderban data set for finding classification 

accuracy. It is observed that among Freeman, Van Zyl, 

Krogager, Yamaguchi 3-components and 4- components 

decomposition Van Zyl gives the best results. The Van Zyl 

decomposition gives better classification accuracy for 

mangroves (93.55%) while Freeman decomposition gives almost 

30% less than Van Zyl. The overall classification accuracy 

obtained by Van Zyl is 97.8%.  ICTD is giving better accuracy 

for this type of data set since it has more natural or distributed 

scatterers than pure scatterers. It is also observed that the H-A-

Alpha decomposition along with the volume scattering Fv or Vv 

from the volume scattering component from Freeman and the 

VanZyl decomposition contributes a significant part to the 

improvement of classification. The accuracy for H-A-Alpha 

classified image is improved from 76.4% to 95.6% and to 96.2% 

after combining the volume scattering component from Freeman 

decomposition and Vanzyl decomposition respectively. The 

accuracy is further improved to 97% when the odd bounce 

component is combined along with volume scattering to H-A-

Alpha for both the decompositions.  
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