
International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

26

Security Monitoring Approach in Embedded System

ABSTRACT
Embedded systems have been developed greatly in terms of

scaling and integration of devices. With each new generation the

complexity of the application also increases with its enhancement.

But little concern is been given over the secure program execution.

Thus the software program becomes susceptible to attacks. There

has been a rising need for an efficient security system for

embedded system applications. For the past years various

monitoring techniques have been proposed to verify the execution.

This paper proposes a model for verifying the execution of the

program during run-time using encryption algorithm. Run-time

verification combines monitoring with formal methods by checking

specified behavior at run-time.

General Terms

Embedded systems, Reliability, Security monitoring system.

Keywords: Encryption, Run-time monitoring, Instruction

integrity.

1. INTRODUCTION
The integrity and security of embedded systems have been a major

concern as they play a significant role in areas such as education,

health care, gaming consoles, network security devices, ambient

intelligence, consumer electronics, avionics, car industry,

controllers in industrial plants, etc.. Embedded system is not only

a hardware module but also comprises of software module. They

are designed and developed for specific applications and not as

general purpose computing device. Embedded systems have

common characteristics such as they should be efficient in terms

of power consumption, size, run-time requirements, weight and

cost. For embedded systems used in applications like RFID,

Smart Cards, Mobile e-commerce etc... security is an important

concern as increasingly sensitive data being exchanged on the

computer networks. This concern necessitates the use of security

protocols to protect the sensitive data from unauthorized

snooping or manipulation by adversaries. The methods usually in

computers networks are firewalls or intrusion detection software

which uses complicated rules and technique. On designing a

security protocol during the system design process is not only

less complicated but also cost efficient.

Usually, security is explained using two legitimate entities

interacting with each other are referred to as A and B and the

adversary is called E. Data exchanged on the computer networks

are susceptible to the follow adversarial threats:

1. E observes data being exchanged between A and B with

the intention of finding out the content.

2. E modifies communication between A and B.

3. E impersonates as A to B, or as B to A.

4. E disrupts the network so that A and B cannot

communicate with each other.

Therefore it’s not only enough to verify logical correctness and

timing constraints of a system but should be able to guarantee the

level of security. Hence it is necessary to define a security

mechanism with the following considerations like using

independent resources, low complexity and faster detection. It is

necessary for a security protocol to be confidential, to be able to

detect unauthorized access and to prevent unauthorized entity to

pose as a legitimate entity [10].

Embedded systems have certain constraints which makes it pron

to attacks. It has limited processing capability due to lesser

hardware and memory size. This makes it difficult to use anti-

virus software and firewalls. It has limited power supply as it is

battery operated device. This makes it more susceptible to attacks

when connected to a network which implies the need for a

security monitoring system.

The remaining part of the paper is as follows: section II briefly

discusses on related works, section III gives an overview of the

monitoring system and section IV explains the experimental

results and section V gives the conclusion and future work.

2. RELATED WORKS

Over the years various methods have been found to ensure the

security of the system in various aspects like physical, thermal or

verifying the integrity of the program. Ravi et al. in [1] describes

various techniques that can be implemented for physical security.

For security of the system during run-time various approach using

static analysis dynamic analysis. The paper [2] describes the use

of control flow graph to verify the execution of the program at run

time. This method is practical and compatible with existing

software. Control flow graph can also be used with machine codes.

It provides a useful foundation for security protocol. But the use

of control flow graph method is vulnerable to attack when the

same block structure as the original code will go undetected for a

while during run-time. In paper [3] the permissible behavior of the

K. Rahimunnisa
Asst. Professor, Dept.of ECE

Karunya University

Coimbatore, India

Rincy Merrin Varkey
PG Scholar, Dept. of ECE

Karunya University

Coimbatore, India

Dr. S.Sureshkumar
HOD & Prof., Dept. of EEE

Karunya University

Coimbatore, India

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

27

application is captured at different level of granularity namely

inter procedural, intra procedural and instruction stream integrity.

This approach however detects deviation after a few instruction

cycle unlike in paper [9]. Another approach is the SAFES method

in [4] is a reconfigurable architecture. A SAFES reconfigurable

architecture is proposed based on the following i) reconfigurable

security primitive, ii) reconfigurable hardware monitor and iii)

hierarchy of security controllers. This approach enables in

dynamically configuring the monitoring of the system thereby

making it flexible for detecting various attacks. Another approach

for embedded security is SAFE-OPS [5]. It uses a combination of

compiler and architecture technique. The authors R.G. Ragel and

S. Parameswaran in [6] discuss about IMPRES technique which is

related to fault detection in bit flips .The method described by the

authors is verifying the application memory by method of

checksum however it can handle code injection as well as bit flips

but only deals with a basic block in a program and does not

verify the integrity of the each instruction.

The authors in [7] Kurthartha Patel and Shri Paremeshwaran

describes the method of using program map and trace file

technique to verify the system during run-time to address code

injection attacks. The method considers a system of N processors

and FIFO is used to communicate between two processors. Each

processor uses a FIFO queue structure to monitor processor. The

program map is attained by static analysis which maps the flow of

the program and a trace file is also generated. The trace file is

generated by adding the execution time of the instructions in a

block. This technique however is unable to detect data corruption.

The work explained below verify the program execution where the

hash value of the instruction at run-time is compared in the

monitoring logic. This method however unable to detect data

corruption. An approach to defending against buffer overflow

attacks is described by Shao et al. in [8]

The work in this paper is related to [9] where hashing of each

instruction is stored in the memory which is compared with real

time values obtained. In [9] the author does mention intrusion

detection in single or few instructions .This paper however

focuses on improving the detection within a single instruction

cycle but instead of using compressed hash value we use a 128-bit

hashing function.

3. SECURITY SYSTEM
Our approach provides an efficient method to ensure the security

of the system and to enable faster detection of attacks. It consists

mainly of application file, memory, processor, MD5 module and

monitoring logic as shown in Fig. 1. The application is the

executable binary file of the application program used in the

system. This is stored in the

Figure 1. Block Diagram of the Architecture

memory. When each instruction is been simultaneously accessed

from the memory, its corresponding hash value is generated which

is then given to the monitoring logic. Here it compares the value of

instruction with a predefined value for the corresponding

instruction. The application is loaded into memory where it is

stored as binary. When the processor fetches the instruction and

executes it, the encrypted value of the instruction is generated

using MD5 algorithm. This is done for verifying the instruction

integrity.

Though there are other hashing algorithms like SHA1, SHA2,

SHA512, etc.. MD5 is used as it has lesser computational rounds

(i.e. 4) when compared to SHA (i.e. 80). This reduces the memory

requirement for computation, enabling the available memory for

utilization for the processor. On using the compressed hash values

[9] it will reduce the memory space required for the storage but

the reliability decreases as there is a slight probability for two

instructions to have the same hash value, for which we use MD5.

The control flow graph of the application is generated offline by

the programmer and its corresponding encrypted value is stored in

the monitoring logic. This is compared with encrypted value of

each instruction at run time. The encrypted value is given to the

monitoring logic. This is compared with the encrypted value from

the control flow graph.

If there is any deviation in the program execution then an attack is

detected. On the detection of an attack an interrupt is sent through

the feedback to initiate shutdown. After which the system can

recover by suitable recovery systems.

3.1 Message Digest (MD5) Algorithm

MD5 is a message digest algorithm developed by Ron Rivest at

MIT. This has been the most widely used secure hash algorithm

particularly in Internet-standard message authentication. The

processing involves the following steps [10].

Applicatio

n Program

Memory Processor

MD5

Generator

Monitoring

Logic

Control

Flow of the

Application

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

28

Step 1. Append Padding Bits

The message is "padded" (extended) so that its length (in bits) is

congruent to 448, modulo 512. That is, the message is extended so

that it is just 64 bit of less being a multiple of 512 bits long.

Padding is performed as follows: a single "1" bit is appended to

the message, and then "0" bits are appended so that the length in

bits of the padded message becomes congruent to 448, modulo

512. In all, at least one bit and at most 512 bits are appended.

Step 2. Append Length

 A 64-bit representation of b (the length of the message before the

padding bits were added) is appended to the result of the previous

step. In the unlikely event that b is greater than 2^64, then only

the low-order 64 bits of b are used. (These bits are appended as

two 32-bit words and appended low-order word first in

accordance with the previous conventions.)At this point the

resulting message (after padding with bits and with b) has a length

that is an exact multiple of 512 bits. Equivalently, this message

has a length that is an exact multiple of 16 (32-bit) words. Let M

[0 ... N-1] denote the words of the resulting message, where N is a

multiple of 16.

Step 3. Initialize MD Buffer

A four-word buffer (A, B, C, D) is used to compute the message

digest. Here each of A, B, C, D is a 32-bit register. These registers

are initialized to the following values in hexadecimal

 Word A: 01 23 45 67

 Word B: 89 AB CD EF

 Word C: FE DC BA 98

 Word D: 76 54 32 10

Step 4. Process Message in 16-Word Blocks

It defines four auxiliary functions, each take three 32-bit words as

input and produces one 32-bit word as output. The functions used

are as follows:

 F(X, Y,Z) = (X^Y) +(not(X)^ Z)

 G(X,Y,Z) = (X^Z) + (Y^ not(Z))

 H(X,Y,Z) = X xor Y xor Z

 I(X,Y,Z) = Y xor (X + not(Z))

4. EXPERIMENTAL RESULTS

A simple password verification program is used here as the

application program. The program verifies the password entered

by the user. If the password is incorrect a flag is generated which

indicates an error has occurred. Date of birth is entered next after

the password is entered correctly. In case if date of birth entered is

incorrect a flag is again generated to indicate the error. On

providing the correct entries the control is transferred to the main

application of the program.

The system is modeled using TurboC. The flowchart of the above

program is as shown in Fig. 2.

Figure 2. Flow chart of the password program

The encryption program uses MD5 algorithm, it reads each

instruction from the program file. The encrypted value of each line

is generated and is verified with the corresponding pre-defined

hash value as shown in Fig. 3. The predefined hash value is used

to forms the comparison logic which verifies the integrity of the

instruction during run-time. Any deviation from the value stored

in comparison logic will be detected that indicates the instruction

is been comprised or the system is under attack. As each

instruction is been executed, its corresponding hash value is

Figure 3. The hash value of each instruction

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

29

Figure 4. The output when the program behaves normally

Figure 5. The output when the program is under attack

calculated simultaneously which is compared with the hash value

stored in the monitoring logic. The output in Fig. 4 shows a

scenario when the program behaves according to its permissible

behavior. If an error occurs it stops the execution indicating an

attack as shown in Fig. 5. Here on varying the binary value in a

particular memory location, due to the mismatch that arises in the

monitoring logic the execution stops indicating the attack.

5. CONCLUSION

We have presented an efficient security protocol which enables

faster detection. Here the security is ensured in the highest level.

Any deviations in execution of the application program will

initiate a feedback which halts the execution of the system. We

are presently working on combining both hash and address pattern

monitoring technique. This method provides a better detection of

buffer overflow as well as verifies instruction integrity.

6. ACKNOWLEDGMENTS

The authors would like to thank Karunya University for the

facilities provided for research.

7. REFERENCES

[1] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper

Resistance Mechanisms for Secure, Embedded Systems,”

Proc. 17th Int’l Conf Very Large Scale Integration Design

(VLSI Design ’04), pp. 605-611, Jan 2004.

[2] M. Abadi, M. Budiu, _ U. Erlingsson, and J. Ligatti,

“Control-Flow Integrity Principles, Implementations, and

Applications,” Proc. ACM Conf. Computer and Comm.

Security (CCS), pp. 340-353, Nov. 2005.

[3] Divya Arora, Srivaths Ravi, Anand Raghunathan, and Niraj

K. Jha, ”Hardware Assisted run-Time Monitoring for Secure

program execution on embedded processors” IEEE

Transaction Very Large Scale Integration Systems

(VLSI),vol.14.no.12,pp.1295-1307,Dec.2006

[4] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet,

and R. Vaslin, “Reconfigurable Hardware for High-

Security/High-Performance Embedded Systems: The SAFES

Perspective,” IEEE Trans. Very Large Scale Integration

(VLSI) Systems, vol. 16, no. 2, pp. 144-155, Feb. 2008

[5] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, and N.

Memon, “SAFEOPS: An Approach to Embedded Software

Security,” ACM Trans. Embedded Computing Systems, vol.

4, no. 1, pp. 189-210, Feb. 2005.

[6] R.G. Ragel and S. Parameswaran, “IMPRES: Integrated

Monitoring for Processor Reliability and Security,” Proc.

43rd Ann. Conf. Design Automation(DAC), pp. 502-505,

July 2006.

[7] Kurthatha Patel, Sri Paremeshwaran and Seng Lin Shee

“Ensuring Secure program execution in multiprocessor

embedded systems ”, in Proceedings of the 5th IEEE/ACM

international conference on Hardware/software co-design and

system synthesis, 2007, pp. 57-62

[8] Z. Shao, Q. Zhuge, Y. He, and E.H.-M. Sha, “Defending

Embedded Systems Against Buffer Overflow via

Hardware/Software,” Proc. 19th Ann.Computer Security

Applications Conf. (ACSAC), pp. 352-363, Dec. 2003

[9] Shufu Mao and Tilman Wolf, Senior Member, IEEE ,”

Hardware Support for Secure Processing in Embedded

Systems” IEEE transactions on computers, vol. 59, no. 6,

June 2010

[10] William Stallings, “Cryptography and Network Security”,

PHI Publishers, Second Edition2007,

