
International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

20

Flowchart Approach to Scalable Encryption Algorithm
Design and Implementation in FPGA

Dilja.K
PG scholar/Applied Electronics

 Bannari Amman Institute of Technology
Sathyamangalam-638 401, Tamilnadu

Dr. S. Natarajan
Asst. professor, Department of ECE

Bannari Amman Institute of Technology
Sathyamangalam-638 401, Tamilnadu

ABSTRACT

The implementation of encryption/decryption algorithm is the
most essential part of the secure communication. In currently

existing encryption algorithms there is a tradeoff between

implementation cost and resulting performances. Scalable

encryption algorithm is targeted for small-embedded application

with limited resources (such as memory size, processor capacity).
SEA n, b is parametric in the text, key and processor word size and

uses a limited instruction set (i.e. NOT, AND, OR, XOR gates,

word rotation and modular addition). And it has a provable

security against linear and differential cryptanalysis. This paper

includes the conversion of loop architecture of SEA into
flowchart, in such a way that encryption and decryption process

are separated, loop is split into two parts and controlling inputs are

removed. By this method it is easy to design in VHDL language,

for implementation in FPGA.

Keywords: Scalable Encryption Algorithm, VHDL,

FPGA.

1. INTRODUCTION
Scalable encryption algorithm (SEA) is a parametric block cipher

for resource-constrained systems (e.g., sensor networks, RFIDs)

that has been introduced in [4]. It was initially designed as a low-

cost encryption/ authentication routine (i.e., with small code size
and memory) targeted for processors with a limited instruction set

(i.e., AND, OR, XOR gates, word rotation, and modular addition).

The algorithm takes the plaintext, key, and the bus sizes as

parameters and, therefore, can be straightforwardly adapted to

various implementation contexts and/or security requirements.
SEA benefits from a stronger security analysis, derived from

recent advances in block cipher design/cryptanalysis. In practice,

SEA has been proven to be an efficient solution for embedded

software applications using micro controllers.

2. ALGORITHM DESCRIPTION

2.1 Parameters And Definitions
SEAn,b operates on various text, key, and word sizes. It is based

on a Feistel structure with a variable number of rounds, and is

defined with respect to the following parameters:

• n plaintext size, key size;

• b processor (or word) size;

• nb = n/2b number of words per Feistel branch;

• nr number of block cipher rounds.

As an only constraint, it is required that n is a multiple
of 6b (Because both the plain text are separated into 2 parts, and

all the operation are done in 3 words). Example- using 8-bit

processor, we can derive a 48-bit block ciphers, denoted as

SEA48, 8.

 Let x be a n/2-bit vector. We consider the following two

representations.

• Bit representation: x b = x ((n/2)-1)……… x(2) x(1) x(0).

• Word representation: x w = x nb-1 x nb-2 ……… x2 x1 x0.

2.2 Basic Operations
Due to its simplicity constraints, SEAn,b is based on a limited
number of elementary operations (selected for their availability in

any processing device) denoted as follows:

1) Bit wise XOR

2) Mod 2b addition

3) A 3-bit substitution box S: = [0, 5, 6, 7, 4, 3, 1, 2] that can be

applied bit wise to any set of 3-bit words for efficiency purposes.

In addition, we use the following rotation operations:

4) Word rotation R, defined on nb-word vectors

R: x y = R (x)

y i+1 = x i 0<=I<=nb-2

y0 = x n b -1

5) Bit rotation r, defined on nb-word vectors

R: x y = r (x)

 y = x3i >>>1

y 3i+1 = x 3i+1

y 3i+2 = x 3i+2 <<<1

Where 0<= i <=(nb/3) –1 and >>> and <<<, respectively,

represent the cyclic right and left shifts inside a word.

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

21

Fig 1. Encrypt/decrypt Round and key round

2.3 Round and Key Round

Based on the previous definitions, the encrypt round FE, decrypt

round FD, and key round FK are pictured in Fig.1 and defined as

[L i+1, R i+1] = FE(Li , Ri , Ki)

 R i+1 = R (Li) r (S (Ri Ki))

 L i+1 = Ri

[L i+1, R i+1] = FD (Li , Ri , Ki)

 R i+1 = R-1 (Li r (S (Ri Ki)))

 L i+1 = Ri [K L i+1, KR i+1]

 = FK (KLi, KRi , Ci)

 KR i+1 = KLi R (r (S (Ri Ki)))

 KL i+1 = KRi

2.4 Complete cipher
The cipher iterates an odd number nr of rounds. The following

pseudo-C code encrypts a plaintext P under a key K and produces

a cipher text C. P, C, and K has a parametric bit size n. The

operations within the cipher are performed considering parametric

b-bit words.

Pseudo-C code

C=SEAn,b (P,K)

%Initialization

L0&R0=P;

KL0&KR0=K;

%Key scheduling

for i in 1 to [nr/2]

KLi,KRi =FK(KLi-1,KRi-1,C(i));

Switch KL[nr/2], KR[nr/2];

for i in [nr/2] +1 to nr/2-1

KLi,KRi =FK(KLi-1,KRi-1,C(r-i));

% Encryption

for i in 1 to [nr/2]

KLi,KRi =FE(Li-1, Ri-1, KRi-1);

for i in [nr/2] +1 to nr/2

KLi,KRi =FK(Li-1, Ri-1, KLi-1));

%final

C=Rnr&Lnr;

Where & is the concatenation operator, KR[n /2] is taken before the

switch and C(i) is a nb-word vector of which all the words have
value 0 excepted the LSW that equals i. Decryption is exactly the

same, using the decrypt round FD.

3. LOOP ARCHITECTURE OF SEA
The structure of our loop architecture for SEA is depicted in

Fig.2, with the round function on the left part and the key

schedule on the right part. Resource-consuming blocks are the S

boxes and the mod2b adder; the Word Rotate and Bit Rotate

blocks are implemented by swapping wires.

Ci

Li+1

R

R-1

r S

Li Ri

Ri+1

KRi

R

r S R

KLi

KLi+1 KRi+1

Ci

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

22

Fig .2. Loop architecture for SEA

According to the specifications, the key schedule contains two
multiplexors allowing to switch the right and left part of the round

key at half the execution of the algorithm using the appropriate

command signal Switch. The multiplexor controlled by Half Exec

provides the round function with the right part of the round key

for the first half of the execution and transmits its left part instead
after the switch. To support both encryption and decryption,

finally added two multiplexors controlled by the Encrypt signal.

Supplementary area consumption will be caused by the two

routing paths. In the round function, the mod 2 adders are realized

by using nb, b-bits adders working in parallel without carry
propagation between them. In the key schedule, the signal Const_i

(provided by the control part) can only take a value between 0 and

nr/2.

4. ENCRYPTION AND DECRYPTION

FLOWCHART
Figure.3 shows the encryption flow chart used in design of the
program. The data and key are the inputs. In the next step both

inputs are divided into two parts and applied to the processing
blocks. The encryption is completed in two loop operations. In

first loop i will take a value of 1 to nr/2. That is the half execution

part, the right part of the key is selected during this operations.

Both key and data swap in end of each, iteration. After finishing

the half execution switch operation is performed. It is done by
swap left and right part of key and the remaining rounds the key

part will not swap in the next loop. The same operation is

performed in next loop except that the left part key is selected in

the round operation. Finally the encrypt output is taken by

concatenating right and left part out put of encrypt round.

Figure.4 shows decryption flow chart, the same process is done
during this flowchart except that inverse word rotation operation

is performed after bit rotation, instead in encrypt round the word

rotation is performed before bitwise XOR.

R R-1 r
Word

rotate

Word Rotate

Inverse

Bit

Rotate

XOR

operation

Mod 2b

addition

NotState0

NotState0

Encrypt

Key in Left Key in Right

Data in Left Data in Right

NotState0

Half

Exec

R r Sbox

0

1
 1

 1 0 0 1

1

0

 1

1

0

 1

R-1

 0 1

R

r Sbox

 0 1

 1 0 0 1

R-1

 0 1

R

r Sbox

 0 1

 1 0 0 1

Decrypt

NotState0

Switch Switch

Const_i

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

23

Fig 3. Encryption flowchart

 Fig 4. Decryption flowchart

LEFT=N, RIGHT=X

i=nr/2+1

W=MODADD(X,Y)

H=SBO X(G)

J=BITRO TATE (H)

K=WORD RO TATE

(J)

M=BIWISE XOR

(L,K)

Y=L (KEY IN LEFT

PART)

C=C+1

R=SBO X (W)

G=MOD ADD(Z,C)

S=BITRO TATE (R)

P=BITWISEXO R(N,S

)

Q=INV-

WORDRO T(P)

N=X, X=Q , L=M, Z=Z

i=nr/2+1

Is

i>nr/2

DEO UT=

LEFT&RIGH
T

STO P

START

DATA, KEY

i=1

N=DATA (LEFT)

X=DATA (RIGHT)

L=KEY (LEFT)

Z=KEY (RIGHT)

W=MODADD(X,Y)

H=SBO X(G)

J=BITRO TATE (H)

K=WORD RO TATE

(J)

M=BIWISE XOR

(L,K)

Y=Z (KEY IN RIGHT

PART)

C=C+1

R=SBO X (W)

G=MODADD (Z,C)

S=BITRO TATE (R)

P=BITWISEXO R(N,S

)

Q=INV-

WORDRO T(P)

N=X, X=Q , L=Z, Z=M

i=i+1

Is i>nr/2

Z=L, L=M (SWICH

OPERATIO N)

START

DATA, KEY

i=1

N=DATA (LEFT)

X=DATA (RIGHT)

L=KEY (LEFT)

Z=KEY (RIGHT)

W=MODADD(X,Y)

H=SBO X(G)

J=BITRO TATE (H)

K=WORD RO TATE

(J)

M=BIWISE XO R

(L,K)

Y=Z (KEY IN RIGHT

PART)

C=C+1

R=SBO X (W)

G=MODADD (Z,C)

S=BITRO TATE (R)

P=WORDRO TATE

(N)

Q=BIWISE XO R (S,P)

N=X, X=Q , L=Z, Z=M

i=i+1

Is i>nr/2

Z=L, L=M (SWICH

OPERATIO N)

LEFT=N, RIGHT=X

ENO UT=

LEFT&RIGH

T

STO P

i=nr/2+1

W=MODADD(X,Y)

H=SBO X(G)

J=BITRO TATE (H)

K=WORD RO TATE

(J)

M=BIWISE XO R

(L,K)

Y=L (KEY IN LEFT

PART)

C=C+1

R=SBO X (W)

G=MOD ADD(Z,C)

S=BITRO TATE (R)

P=WORDRO TATE

(N)

Q=BIWISE XO R (S,P)

N=X, X=Q , L=M, Z=Z

i=nr/2+1

Is

i>nr/2

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

24

5. EXPERIMENTAL RESULTS
The Scalable Encryption Algorithm has is written in VHDL

coding and synthesized using ISE 9.1i tool from Xilinx on a

vertex4 platform with speed grade of –12. The device utilization

summary and timing summary is given below. From the device

utilization summary we can see that 1071 slices are used out of
6144, that is only 17% of the total slices, and look up table used is

1878 out of 12288, that is only 15% of total LUTs. And from

timing summary we can see that maximum combinational path

delay is 140.603ns. The synthesis report is given below.

The Scalable Encryption Algorithm has is written in VHDL

coding and synthesized using ISE 9.1i tool from Xilinx on a

vertex4 platform with speed grade of –12. The device utilization
summary and timing summary is given below. From the device

utilization summary we can see that 1071 slices are used out of

6144, that is only 17% of the total slices, and look up table used is

1878 out of 12288, that is only 15% of total LUTs. And from

timing summary we can see that maximum combinational path

delay is 140.603ns. The synthesis report is given below.

Device utilization summary:

--

Selected Device : 4vlx15sf363-12

 Number of Slices: 1071 out of 6144 17%

 Number of 4 input LUTs: 1878 out of 12288 15%

 Number of IOs: 144

 Number of bonded IOBs: 96 out of 240 40%

--

Timing Summary:

Speed Grade: -12

 Minimum period: No path found

 Minimum input arrival time before clock: No path found

 Maximum output required time after clock: No path found

 Maximum combinational path delay: 140.603ns

--

 The Scalable Encryption Algorithm is written in VHDL coding
and compiled and simulated in ModelSim SE 5.7g and forced

with 2 input values. The waveform of fig.5 shows that we have

obtained an output, which is entirely different from the plain text

value. That is we have got an encrypted output.

6. CONCLUSION
Scalable encryption algorithm constitutes a suitable solution for a

low cost embedded system application like RFID, where area and

power is minimum. The on-the-fly key derivation done for

iterations, hence look up table is reduced compared to other

encryption methods.

Fig.5-Simulation output

7. REFERENCES
[1] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA

implementation and performance evaluation of the AES

block cipher candidate algorithm finalists,” in Proc. AES
Candidate Conf., 2000, pp. 13–12 .Oct 2005.

[2] K. Jarvinen, M. Tommiska, and J. Skytta, “Comparative

survey of high-performance cryptographic algorithm

implementations on FPGAs,” IEE Proc. Inf. Security, vol.

152, pp. 3–12, Oct. 2005.

[3] F. Macé, F.-X. Standaert, and J.-J. Quisquater, “FPGA

Implementation(s) of a Scalable Encryption Algorithm”IEEE

Transactions on very large scale integration (VLSI) system

.vol. 16, no. 2, FEB 2008.

[4] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J.
Quisquater, “Sea: A scalable encryption algorithm for small

embedded applications,” in Proc. CARDIS, 2006, pp. 222–

236.

[5] F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quisquater,

“FPGA implementations of the ICEBERG block cipher,” in
Proc. ITCC, 2005, pp. 556–561.

[6] K.Wong, M.Wark and E.Dawson“ A single-chip FPGA

implementation of the data encryption standard (des)

algorithm” Global Telecommunications Conference, 1998.

GLOBECOM98. The Bridge to Global Integration. IEEE,
10.1109/ GLOCOM.1998.776849

[7] Advanced Encryption Standard, FIPS PUB 197, Nov. 2001.

[8] Data Encryption Standard, FIPS PUB 46-3, Oct. 1999

