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ABSTRACT 

The implementation of encryption/decryption algorithm is the 
most essential part of the secure communication. In currently 

existing encryption algorithms there is a tradeoff between 

implementation cost and resulting performances. Scalable 

encryption algorithm is targeted for small-embedded application 

with limited resources (such as memory size, processor capacity). 
SEA n, b  is parametric in the text, key and processor word size and 

uses a limited instruction set (i.e. NOT, AND, OR, XOR gates, 

word rotation and modular addition). And it has a provable 

security against linear and differential cryptanalysis. This paper 

includes the conversion of loop architecture of SEA into 
flowchart, in such a way that encryption and decryption process 

are separated, loop is split into two parts and controlling inputs are 

removed. By this method it is easy to design in VHDL language, 

for implementation in FPGA. 

Keywords: Scalable Encryption Algorithm, VHDL, 

FPGA. 

1. INTRODUCTION 
Scalable encryption algorithm (SEA) is a parametric block cipher 

for resource-constrained systems (e.g., sensor networks, RFIDs) 

that has been introduced in [4]. It  was initially designed as a low-

cost encryption/ authentication routine (i.e., with small code size 
and memory) targeted for processors with a limited instruction set 

(i.e., AND, OR, XOR gates, word rotation, and modular addition). 

The algorithm takes the plaintext, key, and the bus sizes as 

parameters and, therefore, can be straightforwardly adapted to 

various implementation contexts and/or security requirements. 
SEA benefits from a stronger security analysis, derived from 

recent advances in block cipher design/cryptanalysis. In practice, 

SEA has been proven to be an efficient solution for embedded 

software applications using micro controllers.  

2. ALGORITHM DESCRIPTION   

2.1 Parameters And Definitions 
SEAn,b operates on various text, key, and word sizes. It is based 

on a Feistel structure with a variable number of rounds, and is 

defined with respect to the following parameters:  

• n plaintext size, key size; 

• b processor (or word) size; 

• nb = n/2b number of words per Feistel branch; 

• nr number of block cipher rounds. 

As an only constraint, it is required that n is a multiple 
of 6b (Because both the plain text are separated into 2 parts, and 

all the operation are done in 3 words). Example- using 8-bit 

processor, we can derive a 48-bit block ciphers, denoted as 

SEA48, 8. 

 Let x be a n/2-bit vector. We consider the following two 

representations. 

• Bit representation:  x b = x ((n/2)-1)……… x(2) x(1) x(0).  

• Word representation:  x w = x nb-1 x nb-2 ……… x2 x1 x0.  

2.2 Basic Operations 
Due to its simplicity constraints, SEAn,b is based on a limited 
number of elementary operations (selected for their availability in 

any processing device) denoted as follows:  

1) Bit wise XOR  

2) Mod 2b addition 

3) A 3-bit substitution box S: = [0, 5, 6, 7, 4, 3, 1, 2] that can be 

applied bit wise to any set of 3-bit words for efficiency purposes. 

In addition, we use the following rotation operations:   

4) Word rotation R, defined on nb-word vectors 

R: x  y = R (x)  

y i+1 = x i    0<=I<=nb-2 

y0 = x n b -1 

5) Bit rotation r, defined on nb-word vectors 

R: x  y = r (x)  

        y = x3i    >>>1 

y 3i+1 = x 3i+1 

y 3i+2 = x 3i+2 <<<1 

Where 0<= i <=(nb/3) –1 and >>> and <<<, respectively, 

represent the cyclic right and left shifts inside a word.   
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Fig 1. Encrypt/decrypt Round and key round 

 

2.3 Round and Key Round 

Based on the previous definitions, the encrypt round FE, decrypt 

round FD, and key round FK are pictured in Fig.1 and defined as  

[L i+1, R i+1] = FE(Li , Ri , Ki)  

            R i+1 = R (Li)  r ( S ( Ri   Ki )) 

            L i+1 = Ri 

[L i+1, R i+1] = FD (Li , Ri , Ki)  

            R i+1 = R-1 (Li   r (S (Ri  Ki ))) 

            L i+1 = Ri [ K L i+1, KR i+1 ] 

                   = FK ( KLi, KRi , Ci)  

         KR i+1 = KLi  R (r (S (Ri  Ki ))) 

          KL i+1 = KRi   

 

2.4 Complete cipher 
The cipher iterates an odd number nr of rounds. The following 

pseudo-C code encrypts a plaintext P under a key K and produces 

a cipher text C. P, C, and K has a parametric bit size n. The 

operations within the cipher are performed considering parametric 

b-bit  words. 

Pseudo-C code 

C=SEAn,b (P,K) 

%Initialization 

L0&R0=P; 

KL0&KR0=K; 

%Key scheduling 

for i in 1 to [nr/2] 

KLi,KRi =FK(KLi-1,KRi-1,C(i)); 

Switch KL[nr/2], KR[nr/2]; 

for i in [nr/2] +1 to nr/2-1 

KLi,KRi =FK(KLi-1,KRi-1,C(r-i)); 

% Encryption 

for i in 1 to [nr/2] 

KLi,KRi =FE(Li-1, Ri-1, KRi-1); 

for i in [nr/2] +1 to nr/2 

KLi,KRi =FK(Li-1, Ri-1, KLi-1)); 

%final 

C=Rnr&Lnr; 

Where & is the concatenation operator, KR[ n /2] is taken before the 

switch and C(i) is a nb-word vector of which all the words have 
value 0 excepted the LSW that equals i. Decryption is exactly the 

same, using the decrypt round FD.       

3. LOOP ARCHITECTURE OF SEA 
The structure of our loop architecture for SEA is depicted in 

Fig.2, with the round function on the left part and the key 

schedule on the right part. Resource-consuming blocks are the S 

boxes and the mod2b adder; the Word Rotate and Bit Rotate 

blocks are implemented by swapping wires. 
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Fig .2. Loop architecture for SEA 

According to the specifications, the key schedule contains two 
multiplexors allowing to switch the right and left part of the round 

key at half the execution of the algorithm using the appropriate 

command signal Switch. The multiplexor controlled by Half Exec 

provides the round function with the right part of the round key 

for the first half of the execution and transmits its left part instead 
after the switch. To support both encryption and decryption, 

finally added two multiplexors controlled by the Encrypt signal. 

Supplementary area consumption will be caused by the two 

routing paths. In the round function, the mod 2 adders are realized 

by using nb,  b-bits adders working in parallel without carry 
propagation between them. In the key schedule, the signal Const_i 

(provided by the control part) can only take a value between 0 and 

nr/2. 

4. ENCRYPTION AND DECRYPTION 

FLOWCHART 
Figure.3 shows the encryption flow chart used in design of the 
program. The data and key are the inputs. In the next step both 

inputs are divided into two parts and applied to the processing 
blocks. The encryption is completed in two loop operations. In 

first loop i will take a value of 1 to nr/2. That is the half execution 

part, the right part of the key is selected during this operations. 

Both key and data swap in end of each, iteration. After finishing 

the half execution switch operation is performed. It  is done by 
swap left and right part of key and the remaining rounds the key 

part will not swap in the next loop. The same operation is 

performed in next loop except that the left part key is selected in 

the round operation. Finally the encrypt output is taken by 

concatenating right and left part out put of encrypt round. 

Figure.4 shows decryption flow chart, the same process is done 
during this flowchart except that inverse word rotation operation 

is performed after bit rotation, instead in encrypt round the word 

rotation is performed before bitwise XOR. 
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Fig 3. Encryption flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 4. Decryption  flowchart 
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5. EXPERIMENTAL RESULTS 
The Scalable Encryption Algorithm has is written in VHDL 

coding and synthesized using ISE 9.1i tool from Xilinx on a 

vertex4 platform with speed grade of –12. The device utilization 

summary and timing summary is given below. From the device 

utilization summary we can see that 1071 slices are used out of 
6144, that is only 17% of the total slices, and look up table used is  

1878 out of 12288, that is only 15%  of total LUTs. And from 

timing summary we can see that maximum combinational path 

delay is 140.603ns. The synthesis report is given below. 

The Scalable Encryption Algorithm has is written in VHDL 

coding and synthesized using ISE 9.1i tool from Xilinx on a 

vertex4 platform with speed grade of –12. The device utilization 
summary and timing summary is given below. From the device 

utilization summary we can see that 1071 slices are used out of 

6144, that is only 17% of the total slices, and look up table used is  

1878 out of 12288, that is only 15%  of total LUTs. And from 

timing summary we can see that maximum combinational path 

delay is 140.603ns. The synthesis report is given below.  

Device utilization summary: 

---------------------------------------------------------------------------- 

Selected Device : 4vlx15sf363-12  

 Number of Slices:                    1071  out of   6144    17%   

 Number of 4 input LUTs:              1878  out of  12288    15%   

 Number of IOs:                        144 

 Number of bonded IOBs:                 96  out of    240    40%   

---------------------------------------------------------------------------- 

Timing Summary: 

----------------------------------------------------------------------------- 

Speed Grade: -12 

   Minimum period: No path found 

   Minimum input arrival time before clock: No path found 

   Maximum output required time after clock: No path found 

   Maximum combinational path delay: 140.603ns 

----------------------------------------------------------------------------          

 The Scalable Encryption Algorithm is written in VHDL coding 
and compiled and simulated in ModelSim SE 5.7g and forced 

with 2 input values. The waveform of fig.5 shows that we have 

obtained an output, which is entirely different from the plain text 

value. That is we have got an encrypted output.  

6. CONCLUSION 
Scalable encryption algorithm constitutes a suitable solution for a 

low cost embedded system application like RFID, where area and 

power is minimum. The on-the-fly key derivation done for 

iterations, hence look up table is reduced compared to other 

encryption methods.   

 

 

Fig.5-Simulation output 
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