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ABSTRACT 
The de-noising is a challenging task in the field of signal and 

image processing. De-noising of the natural image corrupted by 

Gaussian noise using wavelet techniques are very effective 

because of its ability to capture the energy of a signal in few 

energy transform values. The wavelet denoising scheme 

thresholds the wavelet coefficients arising from the standard 

discrete wavelet transform. In this paper, we analyzed several 

methods of noise removal from degraded images with Gaussian 

noise by using adaptive wavelet threshold (Bayes Shrink, Normal 

Shrink and Neigh Shrink) and compare the results in term of 

PSNR. 

 

Keywords: Image De-noising, Wavelet Thresholding, 

Bayes Shrink, Normal Shrink, Neigh Shrink.  

 

1. INTRODUCTION 
An image is often corrupted by noise during its acquisition or 

transmission. The de-noising process is to remove the noise while 

retaining and not distorting the quality of the processed image. 

The traditional way of image de-noising is filtering. Recently, a lot 

of research about non-linear methods of signal de-noising has been 

developed. These methods are mainly based on thresholding the 

Discrete Wavelet Transform (DWT) coefficients, which have been 

affected by additive white Gaussian noise [1]. Simple denoising 

algorithms that use DWT consist of three steps. 

 

 Discrete wavelet transform is adopted to 

decompose the noisy image and get the wavelet 

coefficients. 

 These wavelet coefficients are denoised with 

wavelet threshold. 

 Inverse transform is applied to the modified 

coefficients and get denoised image. 

 

The second step, known as thresholding, is a simple non-linear 

technique, which operates on one wavelet coefficient at a time. In 

its most basic form, each coefficient is thresholded by comparing 

threshold, if the coefficient is smaller than threshold, set to zero; 

otherwise it kept as it is or it is modified. Replacing the small 

noisy coefficient by zero and inverse wavelet transform on the 

resulted coefficient may lead to reconstruction with the essential 

signal characteristics and with less noise [2]. 

The paper is organized as follows. Section 2 introduces 
discrete wavelet transform. Section 3 explains wavelet 

thresholding. Section 4 explains the parameter estimation for 

Bayes Shrink, Normal Shrink and Neigh Shrink.  Experimental 

results and discussion are presented in section 5. Finally, the 

conclusion and references  are given in section 6 and 7. 
 

2. DISCRETE WAVELET TRANSFORM  
The Discrete Wavelet Transform (DWT) of image signals 

produces a non-redundant image representation, which provides 

better spatial and spectral localization of image formation, 

compared with other multi scale representations such as Gaussian 

and Laplacian pyramid. Recently, Discrete Wavelet Transform has 

attracted more and more interest in image de-noising. The DWT 

can be interpreted as signal decomposition in a set of independent, 

spatially oriented frequency channels. The signal S is passed 

through two complementary filters and emerges a two signals, 

approximation and details. This is called decomposition or 

analysis. The components can be assembled back into the original 

signal without loss of information. This process is called 

reconstruction or synthesis. The mathematical manipulation, 

which implies analysis and synthesis, is called discrete wavelet 

transform and inverse discrete wavelet transform [3].  Another 

consideration of the wavelets is the sub-band coding theory or 

multi resolution analysis. The signal passes successively through 

pairs of low pass and high pass filters, the analysis filters, which 

produce the transform coefficients. These coefficients, if passes 

successively through the synthesis filters, may reproduce the 

initial signal at the decoder's side. In case of a 2D image, an N 

level decomposition can be performed resulting in 3N+1 different 

frequency bands namely, LL (low frequency or approximation 

coefficients), LH (vertical details), HL (horizontal details) and HH 

(diagonal details) as shown in figure 1. In figure 1, the number 

written next to sub-band name shows the level. The next level of 

wavelet transform is applied to the low frequency sub-band image 

LL only.  

 

3. WAVELET TRESHOLDING  
Let the signal be{ } 1, , , 1, ,ijf i M j N , where M, N is some 

integer power of 2. It has been corrupted by additive noise and one 

observes 

 

,ij ij ijg f n     i = 1, ∙∙∙∙∙, M,  j = 1, ∙∙∙∙∙, N         (1)  

where {nij} are independent and identically distributed (iid) zero 

mean, white Gaussian Noise with standard deviation σ i.e. as 

normal nij ~ N (0, σ2). The goal is to estimate {f ij} from noisy 

observation {gij} such that Mean Squared Error (MSE) is 

minimum, that is given by 
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Fig 1. Sub-bands of the 2-D orthogonal wavelet transform [3] 

It is convenient to label the sub-bands of the transform as in Fig. 1. 

The sub-bands HHk, HLk, LHk are called the details, where k is the 

level ranging from 1 to J, where J is the largest level. The sub-

band LLJ is the low resolution residual.The wavelet-thresholding 

de-noising method filters each coefficient from the detail sub-

bands with a threshold function to obtain modified coefficients. 

The de-noised estimated by inverse wavelet transform of the 

modified coefficients. Here, the threshold plays an important role 

in the de-noising process. There are two thresholding methods 

frequently used. The soft-threshold function (also called the 

shrinkage function) 

( ) sgn( ) max(| | ,0)T x x x T                         (3) 

takes the argument and shrinks it towards zero by the threshold T. 

The other popular alternative is the hard thresholding function. 

 

( ) 1{| | }T x x x T                          (4) 

which keeps the input if it is larger than the threshold; otherwise, it 

is set to zero. The wavelet thresholding procedure removes noise 

by thresholding only the wavelet coefficients of the detail sub-

bands, while keeping the low resolution coefficients unaltered [3], 

[4]. 

Hard thresholding is a keep or kill rule whereas soft thresholding 

shrinks the coefficients above the threshold in absolute value. It is 

a shrink or kill rule as shown in Fig 2. 
 

  

 

 

 

 

 

  t 

  
(a)                                                              (b) 

Fig.2. Thresholding function: (a) Soft threshold, (b) Hard 

threshold 
 

 

4. WAVELET BASED IMAGE DE-NOISING 
All digital images contain some degree of noise. Image de-noising 

algorithm attempts to remove this noise from the image. Ideally, 

the resulting de-noised image will not contain any noise or added 

artifacts. De-noising of natural images corrupted by Gaussian 

noise using wavelet techniques is very effective because of its 

ability to capture the energy of a signal in few energy transform 

values. The basic frame work of the wavelet transform based 

image de-noising is showed in Fig. 3. 

 

       Original Image ( )ijf  

 

 

      Noise ( )ijn  

 

 

      Noisy Image ( )ijg  

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

     De-noised Image '( )ijf  

Fig. 3.The basic frame work of the wavelet transform based 

image de-noising 

Finding an optimum threshold is a tedious process. A small 

threshold value will retain the noisy coefficients whereas a large 

threshold value leads to the loss of coefficients that carry image 

signal details [3]. 

The following are the methods of threshold selection for image de-

noising based on wavelet transform  

 

Method 1: Bayes Shrink (BS) 
The Bayes Shrink method is effective for images including 

Gaussian noise. The observation model is expressed as follows:  

 

Y = X + V                         (5) 

 

Here Y is the wavelet transform of the degraded image, X is the 

wavelet transform of the original image, and V denotes the 

wavelet transform of the noise components following the Gaussian 

distribution N (0, σv
2). Here, since X and V are mutually 

independent, the variances σy
2, σx

2 and σv
2 of y, x and v are given 

by: 

 

 2 2 2
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                               (6) 
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It has been shown that the noise variance 2

v can be estimated 

from the first decomposition level diagonal sub-band HH1 by the 

robust and accurate median estimator [4]. 

 
2

2
1(| |)

0.6745
v

median HH
                                   (7) 

 

The variance of the sub-band of degraded image can be estimated 

as: 

  2
2

1

1 M

y m

m

A
M

                         (8) 

where Am are the wavelet coefficients of sub-band under 

consideration, M is the total number of wavelet coefficient in that 

sub-band. 

The bayes shrink thresholding technique performs soft 

thresholding, with adaptive data driven, sub-band and level 

dependent near optimal threshold given by [4]: 

 




 

2
2 2

max{| |}

v
yv

BS x

m

if
T

A otherwise

                               (9) 

 

Where     2 2

max( ,0)x y v  

In the case, where  2 2

,v y


x
 is taken to be zero, i.e. TBS→ ∞, 

or, in practice, max(| |),BS mT A and all coefficients are set to zero.  

 

Method 2: Normal Shrink (N) 
The optimum threshold value for the Normal Shrink (TN) is given 

by [2]: 

 





2

v

N

v

T                              (10) 

Where, the parameter  is given by the following equation: 

 

 log KL

J
                        (11) 

Lk is the length of the sub-band at kth scale. And, J is the total 

number of decomposition. 
v is the estimated noise variance, 

calculated by equation (7) and  y  is the standard deviation of the 

sub-band of noisy image, calculated by using equation (8). 

Normal Shrink also performs soft thresholding with the data 

driven sub-band dependent threshold TN, which is calculated by 

the equation (10). 

 

Method 3: Neigh Shrink (NS) 
Let g= {gij} will denote the matrix representation of the noisy 

signal. Then, w gW denotes the matrix of wavelet coefficients of 

the signal under consideration. For every value of wij, let Bij 

is a neighbouring window around wij, wij denotes the 
wavelet coefficient to be shrinked. The neighbouring window size 

can be represented as L L , where L is a positive odd number. A 

3 3  neighbouring window centered at the wavelet coefficient to 

be shrinked is shown in Fig 4. 

   

        
                 3 3 window Bij 

               

      

     

      

      

      
 wavelet coefficient 

 to be shrinked 

 
Fig. 4. An illustration of the neighbouring window of size 3 3 

centered at the wavelet coefficient to be shrinked [5] 

Let  

 
2

( , ) ij

ij kl

k l B

s w                         (12) 

We omit the corresponding terms in the summation when the 

above summation has pixel indexes out of the wavelet sub-band 

range. The shrinked wavelet coefficient according to the 

neighshrink is given by this formula [5]: 

 

 'ij ij ijw w                          (13) 

The shrinkage factor βij can be defined as: 

 

 2 2(1 / )ij UNI ijT s                       (14) 

here, the + sign at the end of the formula means to keep the 

positive value while set it to zero when it is negative and TUNI is 

the universal threshold, which is defined as [6]: 

 

 
22 ln( )UNIT n                       (15) 

where n is the length of the signal. 

Different wavelet coefficient sub-bands are shrinked 

independently, but the universal threshold TUNI and neighbouring 

window size L kept unchanged in all sub-bands. The estimated de-

noised signal ' 'ijf f is calculated by taking the inverse wavelet 

transform of the shrinked wavelet coefficients 'ijw  i.e. 1 ''f wW . 

5. Experimental Results and Discussion 
The experiments are conducted on natural gray scale test images 

like Lena and Boat of size 512 512 . The kind of noise, added to 

original image, is Gaussian of different noise levels = 10, 20, 

30, 40. First, the image is transformed into the orthogonal domain 

by taking wavelet transform. Then, the wavelet coefficients are 

modified according to the thresholding or shrinkage algorithm. 

Finally, inverse wavelet transform of the modified wavelet 

coefficients is taken to reconstruct the de-noised image. In this 

paper, different wavelet bases are used, at one scale of 

decomposition, in all methods. The window size for neigh shrink 
is taken in this experiment is 5 5 . For taking the wavelet and 

inverse wavelet transform of the image, available MATLAB 

commands are used. In each sub-band, individual pixels of the 

image are de-noised according to the method used. For measuring 

the performance of the methods Peak Signal to Noise Ratio 

(PSNR) is used, which is calculated using the formula:  
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 PSNR(db)= 10log10(255)2 /MSE                     (16) 

 

where MSE is the mean squared error between the original image 

and the reconstructed de-noised image, which is calculated by the 

equation (2).  

The experiment results are shown in Table I and Fig.5. The PSNR 

from various methods are compared in Table I and the data are 

collected from an average of four runs on the image Lena of size 

512 512 . It is a comparison between Bayes Shrink, Normal 

Shrink and Neigh Shrink. So, the better one is highlighted in bold 

font for each test. Table I also shows the result of PSNR with 

respected to wavelet bases. Among all wavelet bases, the best one 

is highlighted in italic font for each test. In the result we found that 

the Neigh Shrink gives the better performance with respected to 

other methods. It is also found in the experiment that the coiflet 

performance better in image de-noising. But, when we taking the 

time into account, then, the average elapsed time by Neigh Shrink 

for coiflet wavelet bases in a single test, is near about 15 seconds, 

which is much more than the other two methods. The average time 

taking by the Bayes Shrink and Normal Shrink is 1.50 seconds and 

1.48 seconds, respectively. 

 
TABLE I. Comparison of PSNR Values For Different Wavelet Bases, Image De-Noising Techniques And Set Values of .  

 

Wavelet  Bayes Shrink Normal Shrink Neigh Shrink 

 

Haar 

10 

20 

30 

40 

31.4122 

26.7704 

23.8178 

21.5959 

31.1543 

26.7234 

23.8245 

21.6112 

31.8963 

26.9708 

23.9174 

21.6618 

 
db5 

10 
20 

30 

40 

32.2213 
27.3056 

24.1389 

21.7767 

32.1160 
27.3453 

24.1899 

21.8334 

32.5413 

27.4533 

24.2421 

21.8815 

 
sym5 

10 
20 

30 

40 

32.2278 
27.3659 

24.1965 

21.8429 

32.1261 
27.3649 

24.2003 

21.8419 

32.5343 

27.4553 

24.2470 

21.8812 

 

coif5 

10 

20 

30 
40 

32.3218 

27.3982 

24.2091 
21.8519 

32.2203 

27.4143 

24.2285 
21.8608 

32.8963 

27.5007 

24.2702 

21.9012 

 

       
     Noisy Lena  = 20       Bayes Shrink 

                                     
        Normal Shrink        Neigh Shrink 

Fig.5. Results of various Image de-noising methods. 
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6. Conclusion 
In this paper, the image de-noising using discrete wavelet transform is 

analyzed. The experiments were conducted to study the suitability of 

different wavelet bases and also the different methods of threshold or 

shrinkage. The result shows that the Neigh Shrink gives the better result 

than the Bayes and Normal Shrink in term of PSNR. However, when we 

talk about the processing time then, the Normal Shrink is faster than the 

remaining both. And, it also shows that among all wavelet bases, the 

coiflet wavelet gives the better result for image de-noising because it has 

maximum PSNR.  
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