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ABSTRACT 

In this paper, a simple and efficient low complexity fast 

converging partial update normalized LMS (PNLMS) algorithm is 

proposed for the decision feedback equalization. The proposed 

implementation is suitable for applications requiring long adaptive 

equalizers, as is the case in several high-speed wireless 

communication systems. The proposed algorithm yields good bit 

error rate performance over a reasonable signal to noise ratio. In 

each  iteration, without reducing the order of the filter, only a part 

of the filter coefficients are updated so that it reduces the 

computational complexity and improves speed of operation. The 

NLMS algorithm can be considered as a special case and slightly 

improved version of the LMS algorithm which takes into account 

the variation in the signal level at the filter output and selects a 

normalized step size parameter which results in a stable as well as 

fast converging adaptive algorithm. The frequency domain 

representation facilitates, easier to choose step size with which the 

proposed algorithm convergent in the mean squared sense, whereas 

in the time domain it requires the information on the largest eigen 

value of the correlation matrix of the input sequence. Simulation 

studies shows that the proposed realization gives better 

performance compared to existing realizations in terms of 

convergence rate. 

 

Keywords: Adaptive filtering, Bit error rate(BER), Mean 

Square error (MSE),  Normalized least mean square (NLMS) 

algorithm. 

 

1.   INTRODUCTION 

The adaptive decision feedback equalizer (ADFE) [1] provides a 

very effective means for equalizing communication channels that 

exhibit spectral nulls and / or have very long impulse response 

spanning several symbol periods. The ADFE consists of a feed 

forward filter (FFF) and a feedback filter (FBF) and decision 

device. The received signal pass through the FFF first to cancel the 

pre-cursor ISI, and subtract with the result of FBF to cancel the 

post-cursor ISI. Both the FFF and the FBF coefficients are trained 

by some appropriate adaptive algorithm. Among the other 

algorithms, the stochastic gradient LMS algorithm for tap weight 

adaptation of the ADFE is most commonly used [4]. In high-speed 

applications, an ADFE with a large number of taps in the FFF and 

FBF is required. However, the implementation and the real-time 

operation of such an equalizer is a difficult task, due to increased 

complexity and the very small inter symbol period. Another 

important issue in adaptive equalization is the one of convergence 

speed. Fast converging equalizers are highly desirable since they 

require a reduced training sequence, thus offering a valuable 

saving in bandwidth. The issue of convergence is usually traded 

off with the issue of complexity. ADFEs based on the recursive 

least squares (RLS) algorithm exhibit very fast convergence, but 

unfortunately, they require a large number of operations per time 

step. On the other hand, the conventional ADFE, which is based 

on the LMS algorithm, has a much lower complexity as compared 

with the RLS-based ADFE, but its convergence is very slow, 

especially in channels that contain spectral nulls. Moreover, even 

the low computational burden of the LMS based ADFE turns out 

to be prohibitive in demanding applications. To overcome this 

difficulty, several efficient implementations of the LMS-based 

ADFE have been proposed in literature (e.g., [7]-[12]). The works 

[7]-[11] are mostly based on the assumption that the channel 

impulse response has the discrete sparse form. The algorithms in 

the referenced works are possibly applicable to other channels as 

well, but in such a case, their complexity would become quite 

high. Moreover, in some cases, the efficiency depends strongly on 

the constellation used. The NLMS algorithm has been developed 

from different viewpoints. Goodwin and Sin [15] formulated the 

NLMS algorithm as a constrained optimization problem. 

Nitzberg[13] obtained the recursion by running the conventional 

LMS algorithm many times, for each new input sample. Like the 

LMS, the NLMS is also a stochastic implementation of the 

steepest-descent algorithm where the mean value of the filter 

coefficients converge towards their optimal solution. Therefore, 

the filter coefficients will fluctuate about their optimum values 

given by the Wiener solution. The amplitude of the fluctuations is 

controlled by the step size. The smaller the step size, the smaller 

the fluctuations (less final misadjustment) but also the slower the 

adaptive coefficients converge to their optimal values. The NLMS 

algorithm estimates the energy of the input signal each sample and 

normalizes (divides) the step size by this estimate, therefore 

selecting a step size inversely proportion to the instantaneous input 

signal power. One of the advantages of the NLMS algorithm is that 

the step size can be chosen independent of the input signal power 

and the number of tap weights. Although this improves the 

convergence properties in comparison to the LMS, it does not 

solve the eigenvalue spread problem. The NLMS algorithm shows 

stable convergence behavior when the step sizeµ   (convergence 

constant) takes a value between zero and an upper limit defined by 
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the statistics of the filter's input signal. The fastest convergence 

will be achieved for a white noise input sequence with zero mean 

and unit variance. 

In Section II a  new normalized partial update LMS based adaptive 

formulation is derived. In Section III some typical simulation 

results are discussed. 

 

2. PROPOSED IMPLEMENTATION 

 

Let us first formulate the conventional LMS algorithm as follows: 

( ) ( ) ( )ty n w n x n=                                  (1) 

( ) ( ) ( )e n d n y n= −                                    (2) 

( 1) ( ) ( ) ( )W n w n e n x nµ+ = +                       (3) 

Where, y(n) is the filter output and w(n) is the weight vector, 

which can be expressed as, 

1 2( ) [ ( ), ( )..... ( )]tLW n w n w n w n=                    (4) 

Here, x(n) is the input vector, which can be expressed as, 

( ) [ ( ), ( 1)........ ( 1)]tX n x n x n x n L= − − +      (5)                                                          

Where L is the length of the FIR filter, e(n) is the error signal and  

d(n) is the desired response during the initial training phase and 

decision directed during subsequent phase. µ is the step size. By 

applying this conventional LMS algorithm to the ADFE which is 

shown in Fig.1, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    

                                                          Fig.1. Front end of an Adaptive Decision Feedback Equalizer. 

 

The reformulated equations are, 

$( ) [ ( )]y n Q y n=                                        (6) 

( ) ( ) ( )ty n W n nφ=                                  (7) 

( ) [ ( ) ( )]f t bt tW n W n W n=                      (8) 

( ) [ ( ),..... ( 1), ( 1),.... ( )]tn x n x n p v n v n qφ = − + − −  

                                                                    (9) 

where Q[.] represents quantization, 
 

1 2( ) [ ( ), ( ),.... ( )]f f f f t

pW n w n w n w n=    (10) 

        is a pth  order feed forward filter (FFF) and 

 

1 2( ) [ ( ), ( ),.... ( )]b b b b t

qW n w n w n w n=            (11) 

 

is a qth order feedback filter (FBF) at index n. The signal v(n) is 

given by a desired response d(n) during the initial training phase 

and by $( )y n  during the subsequent decision directed phase. 

The weight updating equation is 

 

( 1) ( ) ( ) ( )W n W n n e nµφ+ = +                   (12) 

Where, e(n) = v(n)-y(n)  is the output error at index  n and µ is an 

appropriate step size.  

To reduce the computational complexity we use [14] , the partial 

updating the filter coefficients using LMS algorithm, 

For the instant ‘n’, the filter coefficients are separated as even and 

odd indexed terms as, 

 2 4 6( ) [ ( ), ( ), ( ),....... ( )]te LW n w n w n w n w n=       (13) 

1z −

FBF

FFF + +
x ( )n

( )d n

( )fy n

( )by n

( )y n ( )v n

ˆ ( )y n

+−

( )e n

T raining
D ec is io n
 d irec te d
 

0 1( ) [ ( ), ..., ( )]f f f t

pn w n w n−=w

1( ) [ ( ), ..., ( )]b b b t

qn w n w n=w
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1 3 5 1( ) [ ( ), ( ), ( ),....... ( )]to LW n w n w n w n w n−=     (14) 

The input sequence also divided as even and odd sequences as, 

( ) [ ( 1), ( 3)........ ( 1)]teX n x n x n x n L= − − − +    (15) 

( ) [ ( ), ( 2)........ ( 2)]toX n x n x n x n L= − − +        (16) 

For odd n, the filter coefficients updated using partial update LMS 

algorithm (PLMS) are given by, 

( 1) ( ) ( ) ( )e e eW n W n e n X nµ+ = +                         (17) 

( 1) ( )o oW n W n+ =                                                   (18) 

For even n, the filter coefficients are, 

( 1) ( )e eW n W n+ =                                                    (19) 

( 1) ( ) ( ) ( )o o oW n W n e n X nµ+ = +                        (20) 

 

Define the coefficient error vectors as, 

 

( ) ( ) ( )e e eV n W n W opt= −                                       (21) 

( ) ( ) ( )o o oV n W n W opt= −                                       (22) 

( ) ( ) ( )V n W n W opt= −                                          (23) 

( ) [ ( ), ( )]eo t

e oV n V n V n=                                          (24) 

Where, 

2 4 6( ) [ ( ), ( ), ( ),....... ( )]e LW opt w opt w opt w opt w opt=  

                                                                                      (25) 

1 3 5 1( ) [ ( ), ( ), ( ),....... ( )]o LW opt w opt w opt w opt w opt−=

                                                                                      (26) 

1 2 3( ) [ ( ), ( ), ( ),....... ( )]tLW opt w opt w opt w opt w opt=      

                                                                                      (27) 

For regular LMS algorithm, the recursion for mean coefficient 

error vector [ ( )]E v n  is given by, 

 

[ ( 1)] ( ) [ ( )]E v n I R E v nµ+ = −                              (28) 

Where I is an N dimensional identity matrix, and 

[ ( ) ( )]tR E x n x n=  is the input signal correlation matrix. 

The necessary and sufficient condition for stability of the recursion 

is given by 

max

2
0 µ

λ
< < , where maxλ is the maximum eigen value of the 

input signal correlation matrix R. 

 

For odd n, 

2 1[ ( 2)] ( )( ) [ ( )]E v n I I R I I R E v nµ µ+ = − −          (29) 

For even n, 

1 2[ ( 2)] ( )( ) [ ( )]E v n I I R I I R E v nµ µ+ = − −          (30) 

For stability, the eigen values of  1 2( )( )I I R I I Rµ µ− −  

should lie inside the unit circle. Instead of just two partitions of 

even and odd coefficients (P=2), we have any number of arbitrary 

partitions  ( 2)p ≥  then the update equations can be similarly as 

above with p>2. 

Namely, 

1
[ ( )] ( ) [ ( )]

p

i
i

E v n P I I R E v kπ µ
=

+ = −                       (31) 

If R is a positive definite matrix of dimension N N× with eigen 

values lying in the open interval (0, 2) then, 
1
( )

p

i
i

I I Rπ
=

−   has 

eigen values inside the unit circle. 

iI , i=1,2,…..p  is obtained from I, the identity matrix of 

dimension N N× , by zeroing out some rows in I such that  

1

M

i

i

I
=

∑      is positive definite. 

A. Implementation of  Normalized Partial update 

LMS ADFE Structure 
The weight update equation for the NLMS algorithm is generally 

given by  

    ( 1) ( ) ( ) ( ) ( )w n w n n e n x nµ+ = +                      (32) 

Where , 0 1 1( ) [ ( ), ( ),.... ( )]tLw n w n w n w n−=  is the tap 

vector at the nth index, 

( ) [ ( ), ( 1)...., ( 1)]tX n x n x n x n L= − − +  is the tap input 

vector,   

( ) ( ) ( ) ( )te n d n w n X n= −  is the error signal with d(n) 

being the desired response available during the initial training 

period. The variable ( )nµ  denotes the so-called time varying 

step size parameter. In the most commonly used form  of the 

NLMS algorithm, ( )nµ is taken as  

2

µ
( )

( )
e n

x n θ+� �
, where 

2( ) ( ) ( )tx n x n x n=� �  , is the 

norm of the input signal, which eliminates the problem of gradient 

noise amplification. 

 µ  is a step size control parameter, used to control the speed of 

convergence and chosen   

Here the adaptation constant  µ  is with in the range 0 to 2   for  

convergence and θ  is an appropriate positive number introduced 



International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011 

Proceedings published by International Journal of Computer Applications® (IJCA) 

32 

to avoid divide-by-zero like situations which may arise when the 

norm of the input signal becomes very small.  

Now since NLMS was obtained as a stochastic-gradient 

approximation to Newton’s method, and given the superior 

convergence speed of Newton’s recursion as compared to the 

standard steepest-descent recursion, we expect NLMS to exhibit a 

faster convergence behavior than LMS. 

For high speed digital communications, the input sequence x(n), 

which is partitioned into non-overlapping blocks of length p, is 

applied to an FIR filter of length L, one block at a time. The tap 

weights of the filter are updated using normalized tap update 

equation, after the collection of each block of data samples, so that 

the adaptation of the filter proceeds on a block-by-block basis 

rather than on a sample-by-sample basis as in conventional LMS 

algorithm. With the j-th block, the filter coefficients are updated 

from block to block as, 

1

0

( 1) ( ) ( ) ( )
p

r

W j W j X jp r e jp rµ
−

=

+ = + + +∑          (33) 

Where 0 1 1( ) [ ( ), ( ),.... ( )]tLW j w j w j w j−=  is the tap 

weight vector corresponding to the j-th block, 

 

X(jp+r)=[x(jp+r),x(jp+r-1),…x(jp+r-L+1)]t
                                            (34) 

 

and e(jP + r)is the output error at n = jP + r, given by, 

 

( ) ( ) ( )e jp r d jp r y jp r+ = + − +                             (35) 

 

The sequence d(jP + r) is the so-called desired response available 

during the initial training period and  y(jP + r) is the filter output at  

n = jP + r, given as, 

 

( ) ( ) ( )ty jp r W j X jp r+ = +                                     (36) 

 

The parameter µ popularly called the step size parameter is to be 

chosen as 

{ }
2

0
trace R

µ< <  ,  for convergence of the algorithm. 

However, deriving a block-adaptive DFE is not a straightforward 

task. This is due to an inherent “causality” problem appearing in 

the block formulation of the DFE equations. Specifically, in order 

to obtain the decision symbol at a given time n, the respective 

decisions at times n-1, n-2…..n-N are required (where N is the 

length of the Feedback filter). However by implementing the block 

based DFE in frequency domain, it provides low complexity and 

faster convergence. The inherent “causality” problem appearing in 

the block formulation of the DFE is overcome by replacing the 

unknown decisions with properly derived tentative decisions. An 

initial estimation of these tentative decisions is taken via a 

minimization criterion that exploits all the available information. 

Then, these initial decisions are improved by applying a nonlinear 

iterative procedure, which is executed at each block. This 

procedure converges to the optimum, in the MMSE sense, 

decisions within a few steps. The whole algorithm is implemented 

in the frequency domain, thus offering all the advantages of such 

an implementation. The algorithm has a steady-state performance 

that is identical to that of the conventional symbol-by-symbol DFE 

and remarkably faster convergence rate. The simulations have 

shown that its overall performance is practically insensitive to the 

choice of the block length. Additionally, the complexity of the new 

algorithm is substantially lower, as compared with that of the 

conventional DFE. 

The both feedforward and feedback filter coefficients are trained 

by the weight update equations of Normalized partial update block 

LMS algorithm. Initially the training is imparted by a pilot 

sequence d(n) (Known transmitted sequence) during initial training 

mode and by the output decision $( )y n  during the subsequent 

decision directed mode.  

The output v(n) = d(n) or $( )y n  depending on whether it is the 

initial training period or subsequent decision directed phase. 

The feed forward filter output, yf (n) is, 

( ) ( ) ( )f fy n w n x n=                                          (37) 

Where 0 1( ) [ ( ),....... ( )]f f f t

pW n w n w n−=  

The feed back filter output, yb (n) is,  

( ) ( ) ( 1)b by n w n v n= −                                     (38) 

 

Now the overall output, which is the input to the decision device, 

y(n) is, 

 

( ) ( ) ( )f by n y n y n= +                                     (39) 

           

 

3. SIMULATION RESULTS 

The random number generator provides the test signal and in the 

channel additive white gaussion noise is added. The experimental 

plots for the proposed algorithms are tested. The ensemble 

averaging was performed over 100 independent trials of the 

experiment. Significant improvement in the steady state 

performance and the convergence characteristics are identified. 

The transmitted signals are taken as simple QPSK signals. The 

MSE curves for the proposed ADFE is shown for different values 

of step size µ  are shown in Fig.2. Significant improvement in the 

convergence characteristics are observed with fewer computations 

as compared with the traditional LMS algorithm for normalized 

partial update LMS(NPLMS) based ADFE structure. 
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Fig.2. MSE curves for normalized partial update LMS 

based ADFE for different µ values.  

              

4. CONCLUSION 

Adaptive Decision feedback equalizers with high convergence and 

low complexity are highly desirable in mobile and wireless 

communication systems. In this paper a new normalized partial 

update block LMS based ADFE’S has been developed, which 

exhibits good steady-state performance and convergence 

characteristics with less computations as compared to traditional 

LMS based ADFE. The performances of the designed algorithms 

are verified by plotting the MSE curves. 
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