
International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

43

Decimal Floating Point Multiplication using

RPS Algorithm

Rekha K James
Cochin University of Science

and Technology
Kochi, Kerala

India

K Poulose Jacob
Cochin University of Science

and Technology
Kochi, Kerala

India

Sreela Sasi
Gannon University

Erie
PA
USA

ABSTRACT

Floating-point representation can support a much wider range of

values over fixed point representation. The performance of

decimal floating-point operations is an important measure in

many application domains such as financial, commercial, and

internet-based computations. In this research, an iterative

decimal floating-point multiplier design in IEEE 754-2008

format is proposed. This design uses a decimal fixed point

multiplier using RPS algorithm that generates partial products

for column accumulation from the least significant end in an

iterative manner. It also incorporates the necessary decimal

floating-point exponent processing, rounding and exception

detection capability. The rounding process is initiated in parallel

with the decimal fixed point multiplication of significand digits.

The intermediate exponent, the product sign, sticky bit, round

digit and the guard digit are determined on the fly with the

accumulation of partial products. Simulation result for a 32-bit

data in comparison with the existing designs in literature gives a

delay reduction of 25.12%.

General Terms

Decimal arithmetic, VLSI Design.

Keywords

Decimal Floating Point Multiplier, RPS Algorithm, Rounding

Logic

1. INTRODUCTION
The majority of the world's commercial and financial data are

stored and manipulated in decimal form. Currently, general

purpose computers do decimal computations using binary

arithmetic. Binary data can be stored efficiently and manipulated

very quickly on two-state computers. However, there are

compelling reasons to consider decimal arithmetic, particularly

for business computations. The reasons include human’s natural

affinity for decimal arithmetic, and the inexact mapping between

some decimal and binary values. Binary floating-point values

can only approximate certain common decimal numbers. For

example a value of 0.1 requires an infinitely recurring binary

pattern of zeros and ones. When an average user performs

decimal addition of 0.1 and 0.9, the result is 1.0. If the decimal

addition is performed in binary, the result may be 0.99, due to

error generated by the decimal to binary conversion. In this

world of precision, such errors are no more tolerable. In many

cases, the law requires that results generated from financial

calculations performed on a computer should exactly match with

those carried out using pencil and paper. This is possible only if

the calculations are done in decimal. Recently, support for

decimal arithmetic has received increased attention due to the

growing importance in financial analysis, banking, tax

calculation, currency conversion, insurance, telephone billing

and accounting. Hardware support for decimal operations,

however, has been limited. The scenario is set to change with

the continually dropping cost, and with the significant speedup

achievable in hardware. This leads to the design of processors

that will support Decimal Floating Point (DFP) arithmetic in

near future.

Several hardware designs using IEEE 754–2008 standard [1] for

DFP multiplication have been proposed in literature. The DFP

multiplier in [2] makes use of decimal carry save adders [3] for

Decimal Fixed Point (DFxP) multiplication of its significand

digits. The design of DFP multipliers whose partial product

accumulation is based on non-pipelined iterative implementation

using decimal carry save adders is presented in [4]. A combined

decimal and binary floating-point multiplier is presented in [5].

To attain high speeds, parallel multipliers are used at the

expense of area. A parallel DFP multiplier using parallel DFxP

multiplier is presented in [6, 7]. Parallel designs are adopted

when latency and throughput are considered more important

than area.

In most of the iterative DFP multipliers published so far, the

entire multiplicand is multiplied by one multiplier digit to

generate a partial product in each cycle. An alternative approach

is to generate the partial product using single digit multipliers [8,

9]. The single digit multiplier in [8] uses a standard 4 × 4

unsigned binary multiplier for generating an 8-bit binary output

that needs to be corrected to two decimal digits. A faster

multiplier design for single digit decimal multiplication, with

reduced critical path delay and area is proposed in [9]. A DFxP

multiplication using RPS algorithm is implemented in [10] using

single digit multipliers of [9]. RPS algorithm generates partial

products that are needed for column accumulation from the least

significant end in an iterative manner.

The DFP multiplier design presented in this research utilizes the

DFxP multipliers of [10]. It also incorporates the necessary DFP

exponent processing, rounding and exception detection

capability. The rounding process is initiated in parallel with the

DFxP multiplication of significand digits. The intermediate

exponent, the product sign, sticky bit, round digit and the guard

digit are determined in parallel with the generation and

accumulation of partial products.

The organization of the paper is as follows: Initially, the

background information on IEEE 754–2008 DFP formats are

presented. Then the design for DFP multiplication is discussed.

This is followed by the descriptions of intermediate exponent,

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

44

rounding and exception handling. Simulation is done for 32-bit

DFP data, and synthesized using Leonardo Spectrum from

Mentor Graphics using ASIC Library. This result is then

compared for area and delay with the existing design of [4].

2. DFP FORMATS
The IEEE 754–2008 standard specifies DFP formats of 3

representations: 32-bit format with 7 significand digits, 64-bit

format with 16 significand digits and 128-bit format with 34

significand digits. These encodings allow a range of positive and

negative values, together with values of ±0, ±Infinity, and Not-

a-Number (NaN). In IEEE 754-2008, the value of a finite DFP

number ‘ v ’with an integer significand is given as

qs Cv 10)1(××−=

where ‘S’ is the sign, ‘q’ is the unbiased exponent, and ‘C’ is the

significand portion. Figure 1 shows the DFP format.

Fig. 1. Decimal Floating Point (DFP) format

The 1-bit sign field, ‘S’ indicates the sign of a number. The

(w+5) bits combination field shown as ‘Cf’ in Figure 1 provides

the Most Significant Digit (MSD) of the significand portion, and

the biased exponent, ‘E’. The exponent encoded in binary is a

non-negative number, in the range ‘0’ through ‘Elimit’, from

which the exponent parameter is calculated by subtracting a

bias. The ‘Cf’ field also has special values, such as Not-a-

Number (NaN) and infinity (∞). The remaining digits of the

significand portion are specified in the t-bit trailing significand

field, ‘T’. The number of bits in the ‘T’ field is an integer

multiple of ten, indicated as 10×J where ‘J’ has a value of 2, 5

and 11 in decimal32, decimal64 and decimal128 formats

respectively. IEEE 754-2008 specifies two encodings for the

trailing significand field: Densely Packed Decimal (DPD)

encoding and the Binary Integer Decimal (BID) encoding. This

research makes use of DPD encoding that encodes three decimal

digits in 10 bits, giving a 20% more efficient encoding than a

simple Binary Coded Decimal (BCD). The maximum precision

or the maximum length of the significand is denoted as ‘Plimit’,

which is equal to 7, 16, and 34 digits, for decimal32, decimal64,

and decimal128 formats respectively. If the DFxP multiplication

operation of the significand portion results in more digits than

‘Plimit’ then the result will be rounded.

3. DFP MULTIPLICATION ALGORITHM
The DFP multiplier design presented in this paper extends the

iterative DFxP multiplier design published in [10]. The design is

shown in Figure 2.The operands encoded in DPD are decoded to

get BCD significand digits and binary exponents. Then the

product of significand digits of the two operands is generated

using RPS algorithm of iterative DFxP multiplication. The

Sticky bit (Sb), Round digit (R) and Guard digit (G) generation

are done in parallel with this process. Rounding is accomplished

by selecting either the product truncated to ‘Plimit’ digits or its

incremented value. Initiation of the rounding operation along

with the DFxP multiplication speeds up the entire process. After

rounding, a ‘zero’ at MSD leads to a single digit shift towards

left. As evident from literature, the shifter module is a major

component that contributes to the critical path delay of a floating

point multiplier. So, a second rounding module is used to round

the product, excluding the MSD. Then a selection is made from

the two rounded results based on MSD. The exponent is

adjusted, exceptions are set accordingly, and the result is

encoded back in DPD.

The algorithm is explained using a 32-bit DFP multiplication.

Initially the two 32-bit operands are read from registers, and

decoded to generate 7 significand digits, 8-bit biased exponent

(E) and a Sign bit (S). The exceptions such as ‘NaN’ and

‘Infinity’ are also decoded out from the 32-bit input. The output

exceptions are set at the logic block named ‘Handle exception 1’

depending on the input exceptions. There are four exceptions

that may be signaled during multiplication: Invalid operation,

Overflow, Underflow, and Inexact. The exponent is computed,

and the sign bit of the result is determined as the XOR

combination of sign bit of the two operands. The significand

digits are multiplied using a DFxP multiplier. A 7 digit × 7 digit

DFxP multiplier is used for 32-bit DFP input. This DFxP

multiplier makes use of the RPS algorithm of [10] that generates

the final product (FP) in ‘n+1’ cycles. Figure 3 gives the

detailed schematic of the blocks included in the dashed box in

Figure 2, for a 7 digit × 7 digit DFxP multiplication. The MSD

of the significand of each input operand is suggested to be a

non-zero number. This leads to a unique representation of the

DFP inputs avoiding the need to count the number of leading

zeroes. The smallest number that can be represented in this

format for a 32 bit representation is 1000000×10-101 and the

largest number is 9999999×10+90. Any number that is greater

than the largest number is encoded as ‘Infinity’ with an

‘Overflow’ exception. Similarly any number that is less than the

smallest number is truncated to ‘Zero’ with an ‘Underflow’

exception. If the result from an operation needs more digits than

‘Plimit’ which is the maximum precision of the significand, then

the result will be rounded. If this rounding causes removal of

non-zero digits then, the ‘Inexact’ exception is set.

3.1 Rounding
Rounding is required when all the essential digits of the

‘2n’digit product of an ‘n’ digit × ‘n’ digit fixed point

multiplication cannot be accommodated in ‘Plimit’ digits. This is

accomplished by selecting either the product truncated to ‘Plimit’

or its incremented value and by using Sticky bit (Sb), Round

digit (R) and Guard Digit (G).

3.2 Sticky Bit Generation
The least significant ‘n-2’ digits determine the sticky bit (Sb). It

is desirable to generate sticky bit (Sb) on-the-fly with DFxP

multiplication to improve the speed of DFP. This can be readily

accomplished in this design. The sticky bit (Sb) generation is

done in parallel with the DFxP multiplication. It is shown from

Figure 3 that for a 7 digit × 7 digit DFxP multiplication, the least

significant product digits FP4- FP0 are available after the fourth

clock cycle. Hence sticky bit (Sb) can be generated after the

fourth clock cycle. To generalize, for an ‘n’ digit DFxP

multiplication using RPS algorithm, sticky bit generation can be

done after  )2/(n cycles.

Width 1 bit w+5 bits t= (10×J) bits

 =(3×J) digits

Field Sign Combination Trailing Significand

S Cf T

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

45

Fig. 2. Decimal Floating point (DFP) Multiplier

Roun

ding

Unit

1

Unit

2

Incr

eme

nter

1

Incre

men

ter 2

-

-

-

Fixed

Point

Decimal

Multiplier

MUX

-

-

MSD

-

-

Rounded Product

 Decode Operands

Compute

Exponent

(PE)

Handle

Exception 1

Check

MSD

Adjust Exp

Set Exceptions

Encode

Handle

Exception 2

Comput

e Sign

DFP Product

Read operands

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

46

Fig. 3. Block Schematic of DFxP Multiplier and Rounding Unit

3.3 Round digit and Guard digit Generation
In the next two clock cycles, the Round digit (R) and the Guard

digit (G) are generated. Rounding has to be done on the most

significant ‘n’ digits. The rounding schemes are tabulated in

Table1.

Table 1: Rounding Schemes

When the final product of the DFxP multiplication is one digit

less than the total length, it may be necessary to shift left the

product by one digit to make the MSD a non-zero number. The

corrective left shift of one digit necessitates maintaining an

additional digit to the right of the decimal point. This digit is

referred to as the guard digit and is similar to the guard bit used

in binary floating-point multiplication. The corrective left shift

may lead to an overflow to the (n+1)th digit while rounding the

result. This situation is demonstrated below using a 7 digit × 7

digit DFxP multiplier of a 32-bit DFP multiplication.

Let C1 be the significand of operand 1, and C2 the significand of

operand 2.

If C1 = “3 3 3 3 3 3 0”

and C2 = “3 0 0 0 0 0 3”

Then the 14 digit result of C1 × C2 =

“0 9 9 9 9 9 9 9 9 9 9 9 9 0”

Since the MSD is zero a left shift is performed to avoid leading

zero and the exponent is adjusted accordingly.

Now the new result is

Since G >5, the first 7 digits are to be rounded up, and results in

an 8 digit number “10 000 000”. This overflow to the eighth

digit has to be corrected again. This additional correction or shift

can be overcome by doing the shift after rounding. So, in this

case the rounding is done initially for the product and the result

is shown below.

Rounding mode Condition

Round up

G > 5

G = 5 and R ≠ 0

G = 5 and Sb ≠ 0

Round down G < 5

Round to

nearest even

G = 5 and R = 0

and Sb = 0

“0 9 9 9 9 9 9 9 9 9 9 9 9 0”

 G R Sb = ‘1’

“9 9 9 9 9 9 9 9 9 9 9 9 0 0”

 G R Sb = ‘1’

1
st

cycle

2
nd

cycle 3
rd

cycle 4
th

 cycle 5
th

 cycle 6
th

 cycle 7
th

 cycle 8
th

 cycle

3

op.

add

er

5

op.

add

er

8

op.

add

er

10

op.

add

er

11

op.

add

er

14

op.

add

er

15

op.

add

er

13

op.

add

er

11

op.

add

er

7

op.

add

er

5

3

op.

add

er

2 digit BCD

adder

4 digit high speed BCD

adder

P00

P66

 FP1 FP0

FP2

 FP4 FP3

FP5

FP9 FP8 FP7 FP6

FP13 FP12 FP11 FP10

Rounding

Unit 1 &2

Sticky bit

Incrementer 2

FP12-6a

Incrementer 1

FP13-7

Mux FP13

FP

2 digit BCD

adder

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

47

Even now, since G > 5, the most significant 7 digits are rounded

up to get a value “1 000 000”. The MSD of the rounded result is

not zero anymore and hence left shift is not required.

Now consider another example.

If C1 = “2 3 3 3 3 3 0” and C2 = “3 0 0 0 0 0 3”

The 14 digit result of C1 × C2 =

Since G >5, the first 7 digits are rounded up, and results in a

number “070000000”. The MSD of the rounded result is a zero,

and hence a left shift is done and the exponent value is adjusted.

The shifted result is now “7 0 0 0 0 0 0” if the ‘shifted in digit’

is zero, or a more erroneous result if the ‘shifted in digit’ is the

Guard digit (G). Shifting before rounding would have given a

result “6 9 9 9 9 9 7”. This result is equivalent to rounding the

‘n’ digits excluding the MSD. It also utilizes the correct purpose

of Guard digit. It can be seen that by rounding the result before

shifting the error generated is more. So, in such cases shifting

has to be done first. In other words, select the result after

rounding the ‘n’ digits excluding the MSD. A suitable selection

method is required to determine if rounding is to be done before

shifting or vice versa.

In the proposed DFP multiplier, rounding is done for both the

most significand ‘n’ digits (using Incrementer 2 of Figure 3) and

for the ‘n’ digits excluding MSD (using Incrementer 1 of Figure

3). The appropriate result is selected based on the MSD of the

Incrementer 2. This improves the accuracy of the result if a left

shift is required, and also avoids the need for a shifter module.

This in turn reduces the critical path delay. After rounding, the

required ‘exponent adjust’ is done and if necessary, exceptions

are modified. The final result is then encoded back to DFP

format.

4. SYNTHESIS RESULTS
The proposed DFP multiplier was coded for a 32-bit input in

VHDL, and synthesized to evaluate the area and delay

associated with the design. Synthesis was done using Leonardo

Spectrum from Mentor Graphics Corporation with ASIC

Library. An area and delay breakdown for an approximate

contribution of major components of the design shown in Figure

2 is given in Table 2.

Even though the total area is the sum of area of different stages,

the total delay for the complete circuit is only 53.67ns, which is

less than the total sum of delays of all stages. This is because of

the inherent parallelism in the design. Table 3 shows the

synthesis results of DFxP Multiplier and rounding unit of Figure

3.

Table 2: Area and Delay for different stages of DFP

Multiplier (7-digit × 7-digit)

Table 3: Area and Delay of Rounding Unit and DFxP

Multiplier (7-digit × 7-digit)

Here, also the total delay is less than the sum of delays of each

component as rounding starts before the DFxP multiplication is

completed. This is possible since the sticky bit (Sb), the round

digit (R) and the guard digit (G) are generated on-the-fly during

the DFxP multiplication process. For a 7 digit × 7 digit DFxP

multiplication, the sticky bit (Sb) generation can be done after

the fourth cycle; round and guard digit generation is done in the

next 2 cycles. The delay break up of different components of

DFP Multiplication is shown in Figure 4.

0 10 20 30 40 50 60

1

2

3

4

5

6

Time (ns)

D
F
P
 M

u
lt
ip
li
e
r
M
a
jo
r
c
o
m
p
o
n
e
n
ts

Delay Break up of DFP Multiplier single cycle

Decoding Logic

DFxP Multiplier & Rounding Unit

Expo Adjust & Set Exception

Encoding Logic

Exponent Generation

Exception Handling

Fig. 4. Delay Break up of DFP Multiplier

Figure 5 gives a detailed delay breakup of the DFxP Multiplier

and the rounding unit. The graph showing the delay of a 7 digit

Component

Area Delay

µm2 ns

Decoding Logic 1439 3.26

Exponent generation 229 4.42

Exception handling 66 4.21

DFxP multiplier

& Rounding Unit
25481 41.8

Encoding Logic 600 5.25

Total

27926

53.67

Component

Area Delay

µm2 ns

DFxP Multiplier 18089 30.2

Incremeter 1 3536 22.71

Incremeter 2 3536 22.71

Mux 205 0.24

Sticky bit 51 1.15

Rounding 64 1.96

Total

25481

41.8

“0 6 9 9 9 9 9 6 9 9 9 9 9 0”

 G R Sb = ‘1’

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

48

× 7 digit DFxP multiplication for 8 cycles is given in Figure 6.

The delay break up for one DFP multiplication of 32-bit inputs

is shown in Figure 7. DFP multiplication takes 9 cycles to

complete one 32-bit DFP multiplication with worst cycle time

being 19.97 ns. Hence, the total delay is 179.73 ns.

0 5 10 15 20 25 30 35 40 45

1

2

3

4

5

6

Time (ns)

D
F
x
P
 M

u
lt
ip
lie

r
a
n
d
 R

o
u
n
d
in
g
 U

n
it

Delay Break up of DFxP Multiplier and Rounding Unit

DFxP Multiplier

Incrementer 1

Incrementer 2

Sticky Bit generation

Round and Gaurd digit

Fig, 5. Delay Break up of DFxP Multiplier and Rounding

Unit

0 20 40 60 80 100 120 140

1

2

3

4

5

6

7

8

Time (ns)

C
y
c
le

Delay of 8 cycles for a 7 digit * 7 digit DFxP Multiplier

Fig. 6. Graph showing the ‘delay’ of 7 digit × 7 digit DFxP

Multiplier for 8 cycles

When multiplying two DFP numbers with ‘n’ digit significands,

using the proposed approach, the worst case latency is ‘n + 2’

cycles, and initiation interval is ‘n+1’ cycles. In other words, a

new multiplication can begin every (n+1)th cycle. The final cycle

of current set of inputs and the first cycle for next set of inputs

are done simultaneously.

0 20 40 60 80 100 120 140 160

1

2

3

4

5

6

7

Time (ns)

D
F
P
 M

u
lt
ip
lie
r
C
o
m
p
o
n
e
n
ts

Delay of 32 bit DFP Multiplier

Decoding Logic
DFxP Multiplier

Incrementer 2

Expo Adjust & Exception Set

Encoding Logic

Fig. 7. Delay break up of 32 bit DFP Multiplier

The proposed design differs in partial product generation by

using RPS algorithm and in rounding logic from the iterative

approach for the DFxP multiplication in [4]. Both these designs

are synthesized in the same environment. Table 4 shows the

comparisons of the DFxP multiplier designs using design of [10]

and that of design of [4]. The design of [10] needs double the

area for almost the same latency. But when the design of [10] is

used as the DFxP Multiplier of a DFP multiplication, the speed

is increased as tabulated in Table 5. This is because the rounding

process is initiated before the DFxP Multiplication cycles are

over. This parallelism achieved in the proposed DFP multiplier

design decreases the delay of the critical path. This in turn

reduces the worst cycle time and increases the throughput. A

delay reduction of 25.12% is achieved using this approach

compared to the design in [4].

Table 4: Comparison of DFxP multipliers (7-digit × 7-digit)

Extending the iterative DFxP multiplier design to support DFP

multiplication affects the area, cycle time, latency, and initiation

interval. The area of the DFP multiplier design is 50% more than

that of the DFxP multiplier design. The worst case period of the

DFP multiplier design is 12% more than that for the DFxP

design. The latency of the DFP multiplier is two cycles more

than the DFxP multiplier and the dispatch spacing between

multiply operations is increased by one cycle.

Parameters RPS Design of

 [4]

Ratio

Area (µm2)

18089 8268 2.18

Delay of

7-digit x 7-digit

multiplication (ns)

133.55

130.4

1.024

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

49

Table 5: Comparison of DFP Multipliers for 32-bit input

5. CONCLUSION
The iterative DFP multiplier presented in this research includes

the floating point extensions to the iterative DFxP multiplier

design of [10] in terms of exponent processing, rounding, and

exception detection and handling. This DFP multiplier design is

in compliance with IEEE 754-2008. The VHDL code for a 32

bit DFP multiplier is synthesized to find the area and delay using

Leonardo Spectrum from Mentor Graphics Corporation with

ASIC Library. The proposed design and the design in [4] for the

DFP Multiplication are synthesized in the same environment. A

delay reduction of 25.12% is achieved because of the initiation

of rounding process during the DFxP multiplication. This

parallelism decreases the delay of the last cycle, which in turn

reduces the worst case period and increases the throughput.

When multiplying two DFP numbers with ‘n’ digit significands,

using this approach the worst case latency is ‘n+2’ cycles, and

initiation interval is ‘n+1’ cycles. Novel features of this

multiplier include the DFxP multiplication using RPS algorithm,

on-the-fly generation of the sticky bit and the initiation of

rounding process during the DFxP multiplication.

6. REFERENCES
[1] IEEE Working Group of the Microprocessor Standards

Subcommittee, IEEE Standard for Floating-Point

Arithmetic. New York: The Institute of Electrical and

Electronics Engineers, 2008.

[2] M. A. Erle, M. J. Schulte, and B. J. Hickmann, Decimal

Floating-Point Multiplication Via Carry-Save Addition," in

18th IEEE Symposium on Computer Arithmetic, pp.

46{55, IEEE Computer Society, June 2007.

[3] M. A. Erle and M. J. Schulte, “Decimal Multiplication via

Carry-Save Addition," in 14th IEEE International

Conference on Application-Specific Systems,

Architectures, and Processors, pp. 348{358, June 2003

[4] M. A. Erle, B. J. Hickmann and M. J. Schulte, “Decimal

Floating-Point Multiplication”, IEEE Transactions on

Computers, Volume 58 , Issue 7, July 2009, Pages 902-

916, ISSN:0018-9340.

[5] Charles Tsen, Sonia González-Navarro, Michael Schulte,

Brian Hickmann, Katherine Compton, "A Combined

Decimal and Binary Floating-Point Multiplier," 20th IEEE

International Conference on Application-specific Systems,

Architectures and Processors, 2009, pp.8-15.

[6] H. A. H. Fahmy, R. Raafat, A. M. Abdel-Majeed, R. Samy,

Tarek ElDeeb, Y. Farouk, "Energy and Delay Improvement

via Decimal Floating Point Units," Proceedings on19th

IEEE Symposium on Computer Arithmetic, 2009, pp.221-

224.

[7] A. Vazquez, E. Antelo, P. Moutuschi, “Improved Design of

High-Performance Parallel Decimal Multipliers”,

Proceedings of the IEEE Transactions on Computers, Vol.

59 no: 5, May 2010, pp679–693.

[8] G. Jaberipur, A. Kaivani, “Binary-coded decimal digit

multipliers”, Computers & Digital Techniques, IET Vol.

1,Issue 4, July 2007, pp 377–381

[9] R. K. James, Shahana T. K, K. P. Jacob and S. Sasi,

“Decimal Multilpication using Compact BCD Multiplier”,

International Conference on Electronic Design , ICED Dec

2008, Penang, Malaysia, pp 1-6

[10] R. K. James, Shahana T. K, K. P. Jacob and S. Sasi, “ Fixed

Point Decimal Multiplication Using RPS Algorithm”,

International Symposium on Parallel and Distributed

Processing with Applications, Dec 2008. ISPA '08, Sydney,

Australia, pp 343-350

Parameters RPS Design of

 [4]

Ratio

Worst cycle time

(ns)

19.97 26.67 0.749

Maximum

frequency (MHz)

50 37.5 1.333

Delay of

32-bit DFP

multiplication in

terms of worst cycle

time (ns)

179.73

240.03

0.749

