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ABSTRACT 

Floating-point representation can support a much wider range of 

values over fixed point representation. The performance of 

decimal floating-point operations is an important measure in 

many application domains such as financial, commercial, and 

internet-based computations. In this research, an iterative 

decimal floating-point multiplier design in IEEE 754-2008 

format is proposed. This design uses a decimal fixed point 

multiplier using RPS algorithm that generates partial products 

for column accumulation from the least significant end in an 

iterative manner. It also incorporates the necessary decimal 

floating-point exponent processing, rounding and exception 

detection capability. The rounding process is initiated in parallel 

with the decimal fixed point multiplication of significand digits. 

The intermediate exponent, the product sign, sticky bit, round 

digit and the guard digit are determined on the fly with the 

accumulation of partial products. Simulation result for a 32-bit 

data in comparison with the existing designs in literature gives a 

delay reduction of 25.12%.   
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1. INTRODUCTION 
The majority of the world's commercial and financial data are 

stored and manipulated in decimal form. Currently, general 

purpose computers do decimal computations using binary 

arithmetic. Binary data can be stored efficiently and manipulated 

very quickly on two-state computers. However, there are 

compelling reasons to consider decimal arithmetic, particularly 

for business computations. The reasons include human’s natural 

affinity for decimal arithmetic, and the inexact mapping between 

some decimal and binary values. Binary floating-point values 

can only approximate certain common decimal numbers. For 

example a value of 0.1 requires an infinitely recurring binary 

pattern of zeros and ones. When an average user performs 

decimal addition of 0.1 and 0.9, the result is 1.0. If the decimal 

addition is performed in binary, the result may be 0.99, due to 

error generated by the decimal to binary conversion. In this 

world of precision, such errors are no more tolerable. In many 

cases, the law requires that results generated from financial 

calculations performed on a computer should exactly match with 

those carried out using pencil and paper. This is possible only if 

the calculations are done in decimal. Recently, support for 

decimal arithmetic has received increased attention due to the 

growing importance in financial analysis, banking, tax 

calculation, currency conversion, insurance, telephone billing 

and accounting. Hardware support for decimal operations, 

however, has been limited. The scenario is set to change with 

the continually dropping cost, and with the significant speedup 

achievable in hardware. This leads to the design of processors 

that will support Decimal Floating Point (DFP) arithmetic in 

near future.  

Several hardware designs using IEEE 754–2008 standard [1] for 

DFP multiplication have been proposed in literature. The DFP 

multiplier in [2] makes use of decimal carry save adders [3] for 

Decimal Fixed Point (DFxP) multiplication of its significand 

digits. The design of DFP multipliers whose partial product 

accumulation is based on non-pipelined iterative implementation 

using decimal carry save adders is presented in [4]. A combined 

decimal and binary floating-point multiplier is presented in [5]. 

To attain high speeds, parallel multipliers are used at the 

expense of area. A parallel DFP multiplier using parallel DFxP 

multiplier is presented in [6, 7]. Parallel designs are adopted 

when latency and throughput are considered more important 

than area.  

In most of the iterative DFP multipliers published so far, the 

entire multiplicand is multiplied by one multiplier digit to 

generate a partial product in each cycle. An alternative approach 

is to generate the partial product using single digit multipliers [8, 

9]. The single digit multiplier in [8] uses a standard 4 × 4 

unsigned binary multiplier for generating an 8-bit binary output 

that needs to be corrected to two decimal digits. A faster 

multiplier design for single digit decimal multiplication, with 

reduced critical path delay and area is proposed in [9]. A DFxP 

multiplication using RPS algorithm is implemented in [10] using 

single digit multipliers of [9]. RPS algorithm generates partial 

products that are needed for column accumulation from the least 

significant end in an iterative manner.  

The DFP multiplier design presented in this research utilizes the 

DFxP multipliers of [10]. It also incorporates the necessary DFP 

exponent processing, rounding and exception detection 

capability. The rounding process is initiated in parallel with the 

DFxP multiplication of significand digits. The intermediate 

exponent, the product sign, sticky bit, round digit and the guard 

digit are determined in parallel with the generation and 

accumulation of partial products. 

The organization of the paper is as follows: Initially, the 

background information on IEEE 754–2008 DFP formats are 

presented. Then the design for DFP multiplication is discussed. 

This is followed by the descriptions of intermediate exponent, 
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rounding and exception handling. Simulation is done for 32-bit 

DFP data, and synthesized using Leonardo Spectrum from 

Mentor Graphics using ASIC Library. This result is then 

compared for area and delay with the existing design of [4]. 

2. DFP FORMATS 
The IEEE 754–2008 standard specifies DFP formats of 3 

representations: 32-bit format with 7 significand digits, 64-bit 

format with 16 significand digits and 128-bit format with 34 

significand digits. These encodings allow a range of positive and 

negative values, together with values of ±0, ±Infinity, and Not-

a-Number (NaN). In IEEE 754-2008, the value of a finite DFP 

number ‘ v ’with an integer significand is given as 

qs Cv 10)1( ××−=  

where ‘S’ is the sign, ‘q’ is the unbiased exponent, and ‘C’ is the 

significand portion. Figure 1 shows the DFP format.  

 

 

 

 

 

 

 

 

 

Fig. 1. Decimal Floating Point (DFP) format 

The 1-bit sign field, ‘S’ indicates the sign of a number. The 

(w+5) bits combination field shown as ‘Cf’ in Figure 1 provides 

the Most Significant Digit (MSD) of the significand portion, and 

the biased exponent, ‘E’. The exponent encoded in binary is a 

non-negative number, in the range ‘0’ through ‘Elimit’, from 

which the exponent parameter is calculated by subtracting a 

bias. The ‘Cf’ field also has special values, such as Not-a-

Number (NaN) and infinity (∞). The remaining digits of the 

significand portion are specified in the t-bit trailing significand 

field, ‘T’. The number of bits in the ‘T’ field is an integer 

multiple of ten, indicated as 10×J where ‘J’ has a value of 2, 5 

and 11 in decimal32, decimal64 and decimal128 formats 

respectively. IEEE 754-2008 specifies two encodings for the 

trailing significand field: Densely Packed Decimal (DPD) 

encoding and the Binary Integer Decimal (BID) encoding. This 

research makes use of DPD encoding that encodes three decimal 

digits in 10 bits, giving a 20% more efficient encoding than a 

simple Binary Coded Decimal (BCD). The maximum precision 

or the maximum length of the significand is denoted as ‘Plimit’, 

which is equal to 7, 16, and 34 digits, for decimal32, decimal64, 

and decimal128 formats respectively. If the DFxP multiplication 

operation of the significand portion results in more digits than 

‘Plimit’ then the result will be rounded. 

3. DFP MULTIPLICATION ALGORITHM 
The DFP multiplier design presented in this paper extends the 

iterative DFxP multiplier design published in [10]. The design is 

shown in Figure 2.The operands encoded in DPD are decoded to 

get BCD significand digits and binary exponents. Then the 

product of significand digits of the two operands is generated 

using RPS algorithm of iterative DFxP multiplication. The 

Sticky bit (Sb), Round digit (R) and Guard digit (G) generation 

are done in parallel with this process. Rounding is accomplished 

by selecting either the product truncated to ‘Plimit’ digits or its 

incremented value. Initiation of the rounding operation along 

with the DFxP multiplication speeds up the entire process. After 

rounding, a ‘zero’ at MSD leads to a single digit shift towards 

left. As evident from literature, the shifter module is a major 

component that contributes to the critical path delay of a floating 

point multiplier. So, a second rounding module is used to round 

the product, excluding the MSD. Then a selection is made from 

the two rounded results based on MSD. The exponent is 

adjusted, exceptions are set accordingly, and the result is 

encoded back in DPD. 

The algorithm is explained using a 32-bit DFP multiplication. 

Initially the two 32-bit operands are read from registers, and 

decoded to generate 7 significand digits, 8-bit biased exponent 

(E) and a Sign bit (S). The exceptions such as ‘NaN’ and 

‘Infinity’ are also decoded out from the 32-bit input. The output 

exceptions are set at the logic block named ‘Handle exception 1’ 

depending on the input exceptions. There are four exceptions 

that may be signaled during multiplication: Invalid operation, 

Overflow, Underflow, and Inexact. The exponent is computed, 

and the sign bit of the result is determined as the XOR 

combination of sign bit of the two operands. The significand 

digits are multiplied using a DFxP multiplier. A 7 digit × 7 digit 

DFxP multiplier is used for 32-bit DFP input. This DFxP 

multiplier makes use of the RPS algorithm of [10] that generates 

the final product (FP) in ‘n+1’ cycles. Figure 3 gives the 

detailed schematic of the blocks included in the dashed box in 

Figure 2, for a 7 digit × 7 digit DFxP multiplication. The MSD 

of the significand of each input operand is suggested to be a 

non-zero number. This leads to a unique representation of the 

DFP inputs avoiding the need to count the number of leading 

zeroes. The smallest number that can be represented in this 

format for a 32 bit representation is 1000000×10-101 and the 

largest number is 9999999×10+90. Any number that is greater 

than the largest number is encoded as ‘Infinity’ with an 

‘Overflow’ exception. Similarly any number that is less than the 

smallest number is truncated to ‘Zero’ with an ‘Underflow’ 

exception. If the result from an operation needs more digits than 

‘Plimit’ which is the maximum precision of the significand, then 

the result will be rounded. If this rounding causes removal of 

non-zero digits then, the ‘Inexact’ exception is set. 

3.1 Rounding 
Rounding is required when all the essential digits of the 

‘2n’digit product of an ‘n’ digit × ‘n’ digit fixed point 

multiplication cannot be accommodated in ‘Plimit’ digits.  This is 

accomplished by selecting either the product truncated to ‘Plimit’ 

or its incremented value and by using Sticky bit (Sb), Round 

digit (R) and Guard Digit (G). 

3.2 Sticky Bit Generation 
The least significant ‘n-2’ digits determine the sticky bit (Sb). It 

is desirable to generate sticky bit (Sb) on-the-fly with DFxP 

multiplication to improve the speed of DFP. This can be readily 

accomplished in this design. The sticky bit (Sb) generation is 

done in parallel with the DFxP multiplication. It is shown from 

Figure 3 that for a 7 digit × 7 digit DFxP multiplication, the least 

significant product digits FP4- FP0 are available after the fourth 

clock cycle. Hence sticky bit (Sb) can be generated after the 

fourth clock cycle. To generalize, for an ‘n’ digit DFxP 

multiplication using RPS algorithm, sticky bit generation can be 

done after  )2/(n cycles. 

 

Width  1 bit              w+5 bits                        t= (10×J) bits    

  =(3×J) digits 

 

Field    Sign             Combination                    Trailing Significand 

S                  Cf                      T 
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Fig. 2. Decimal Floating point (DFP) Multiplier  
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Fig. 3. Block Schematic of DFxP Multiplier and Rounding Unit 

3.3 Round digit and Guard digit Generation 
In the next two clock cycles, the Round digit (R) and the Guard 

digit (G) are generated. Rounding has to be done on the most 

significant ‘n’ digits. The rounding schemes are tabulated in 

Table1. 

Table 1: Rounding Schemes 

 

 

When the final product of the DFxP multiplication is one digit 

less than the total length, it may be necessary to shift left the 

product by one digit to make the MSD a non-zero number. The 

corrective left shift of one digit necessitates maintaining an 

additional digit to the right of the decimal point. This digit is 

referred to as the guard digit and is similar to the guard bit used 

in binary floating-point multiplication. The corrective left shift 

may lead to an overflow to the (n+1)th digit while rounding the 

result. This situation is demonstrated below using a 7 digit × 7 

digit DFxP multiplier of a 32-bit DFP multiplication. 

Let C1 be the significand of operand 1, and C2 the significand of 

operand 2. 

If C1 = “3 3 3 3 3 3 0”    

and  C2 = “3 0 0 0 0 0 3” 

 

Then the 14 digit result of C1 × C2 =  

“0 9 9 9 9 9 9 9 9 9 9 9 9 0” 

 

Since the MSD is zero a left shift is performed to avoid leading 

zero and the exponent is adjusted accordingly. 

 

Now the new result is      

 

 

 

 

Since G >5, the first 7 digits are to be rounded up, and results in 

an 8 digit number “10 000 000”. This overflow to the eighth 

digit has to be corrected again. This additional correction or shift 

can be overcome by doing the shift after rounding. So, in this 

case the rounding is done initially for the product and the result 

is shown below. 

 

 

Rounding  mode Condition 
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Even now, since G > 5, the most significant 7 digits are rounded 

up to get a value “1 000 000”. The MSD of the rounded result is 

not zero anymore and hence left shift is not required.  

 

Now consider another example.  

If C1 = “2 3 3 3 3 3 0” and C2 = “3 0 0 0 0 0 3” 

 

The 14 digit result of C1 × C2 =  

 

 

 

 

 

Since G >5, the first 7 digits are rounded up, and results in a 

number “070000000”. The MSD of the rounded result is a zero, 

and hence a left shift is done and the exponent value is adjusted. 

The shifted result is now “7 0 0 0 0 0 0” if the ‘shifted in digit’ 

is zero, or a more erroneous result if the ‘shifted in digit’ is the 

Guard digit (G). Shifting before rounding would have given a 

result “6 9 9 9 9 9 7”. This result is equivalent to rounding the 

‘n’ digits excluding the MSD. It also utilizes the correct purpose 

of Guard digit. It can be seen that by rounding the result before 

shifting the error generated is more. So, in such cases shifting 

has to be done first.  In other words, select the result after 

rounding the ‘n’ digits excluding the MSD. A suitable selection 

method is required to determine if rounding is to be done before 

shifting or vice versa.  

In the proposed DFP multiplier, rounding is done for both the 

most significand ‘n’ digits (using Incrementer 2 of Figure 3) and 

for the ‘n’ digits excluding MSD (using Incrementer 1 of Figure 

3). The appropriate result is selected based on the MSD of the 

Incrementer 2. This improves the accuracy of the result if a left 

shift is required, and also avoids the need for a shifter module. 

This in turn reduces the critical path delay. After rounding, the 

required ‘exponent adjust’ is done and if necessary, exceptions 

are modified. The final result is then encoded back to DFP 

format. 

4. SYNTHESIS RESULTS 
The proposed DFP multiplier was coded for a 32-bit input in 

VHDL, and synthesized to evaluate the area and delay 

associated with the design. Synthesis was done using Leonardo 

Spectrum from Mentor Graphics Corporation with ASIC 

Library. An area and delay breakdown for an approximate 

contribution of major components of the design shown in Figure 

2 is given in Table 2. 

 

Even though the total area is the sum of area of different stages, 

the total delay for the complete circuit is only 53.67ns, which is 

less than the total sum of delays of all stages. This is because of 

the inherent parallelism in the design. Table 3 shows the 

synthesis results of DFxP Multiplier and rounding unit of Figure 

3.  

Table 2: Area and Delay for different stages of DFP 

Multiplier (7-digit × 7-digit) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Area and Delay of Rounding Unit and DFxP 

Multiplier (7-digit × 7-digit) 

 

 

 

 

 

 

 

Here, also the total delay is less than the sum of delays of each 

component as rounding starts before the DFxP multiplication is 

completed. This is possible since the sticky bit (Sb), the round 

digit (R) and the guard digit (G) are generated on-the-fly during 

the DFxP multiplication process. For a 7 digit × 7 digit DFxP 

multiplication, the sticky bit (Sb) generation can be done after 

the fourth cycle; round and guard digit generation is done in the 

next 2 cycles. The delay break up of different components of 

DFP Multiplication is shown in Figure 4.  

0 10 20 30 40 50 60

1

2

3

4

5

6

Time (ns)

D
F
P
 M

u
lt
ip
li
e
r 
M
a
jo
r 
c
o
m
p
o
n
e
n
ts

Delay Break up of DFP Multiplier single cycle

Decoding Logic

DFxP Multiplier & Rounding Unit

Expo Adjust & Set Exception

Encoding Logic

Exponent Generation

Exception Handling

 

Fig. 4. Delay Break up of DFP Multiplier 

Figure 5 gives a detailed delay breakup of the DFxP Multiplier 

and the rounding unit. The graph showing the delay of a 7 digit 

 

Component 

Area Delay 

µm2 ns 

Decoding Logic 1439 3.26 

Exponent generation 229 4.42 

Exception handling 66 4.21 

DFxP multiplier 

& Rounding Unit 
25481 41.8 

Encoding Logic 600 5.25 

 

Total 
 

27926 

 

53.67 

 

Component 

Area Delay 

µm2 ns 

DFxP Multiplier 18089 30.2 

Incremeter 1 3536 22.71 

Incremeter 2 3536 22.71 

Mux 205 0.24 

Sticky bit 51 1.15 

Rounding 64 1.96 

 

Total 
 

25481 

 

41.8 

“0 6 9 9 9 9 9 6 9 9 9 9 9 0” 

                G     R          Sb = ‘1’ 
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× 7 digit DFxP multiplication for 8 cycles is given in Figure 6. 

The delay break up for one DFP multiplication of 32-bit inputs 

is shown in Figure 7. DFP multiplication takes 9 cycles to 

complete one 32-bit DFP multiplication with worst cycle time 

being 19.97 ns. Hence, the total delay is 179.73 ns.  
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Fig, 5. Delay Break up of DFxP Multiplier and Rounding 
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When multiplying two DFP numbers with ‘n’ digit significands, 

using the proposed approach, the worst case latency is ‘n + 2’ 

cycles, and initiation interval is ‘n+1’ cycles. In other words, a 

new multiplication can begin every (n+1)th cycle. The final cycle 

of current set of inputs and the first cycle for next set of inputs 

are done simultaneously. 
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Fig. 7. Delay break up of 32 bit DFP Multiplier 

 

The proposed design differs in partial product generation by 

using RPS algorithm and in rounding logic from the iterative 

approach for the DFxP multiplication in [4]. Both these designs 

are synthesized in the same environment. Table 4 shows the 

comparisons of the DFxP multiplier designs using design of [10] 

and that of design of [4]. The design of [10] needs double the 

area for almost the same latency. But when the design of [10] is 

used as the DFxP Multiplier of a DFP multiplication, the speed 

is increased as tabulated in Table 5. This is because the rounding 

process is initiated before the DFxP Multiplication cycles are 

over. This parallelism achieved in the proposed DFP multiplier 

design decreases the delay of the critical path. This in turn 

reduces the worst cycle time and increases the throughput. A 

delay reduction of 25.12% is achieved using this approach 

compared to the design in [4]. 

Table 4: Comparison of DFxP multipliers (7-digit × 7-digit) 

 

Extending the iterative DFxP multiplier design to support DFP 

multiplication affects the area, cycle time, latency, and initiation 

interval. The area of the DFP multiplier design is 50% more than 

that of the DFxP multiplier design. The worst case period of the 

DFP multiplier design is 12% more than that for the DFxP 

design. The latency of the DFP multiplier is two cycles more 

than the DFxP multiplier and the dispatch spacing between 

multiply operations is increased by one cycle. 

 

 

Parameters RPS Design of 

 [ 4] 

Ratio 

Area (µm2) 

 

18089 8268 2.18 

Delay of  

7-digit x 7-digit  

multiplication (ns) 

 

133.55 

 

130.4 

 

1.024 
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Table 5: Comparison of DFP Multipliers for 32-bit input 

 

5. CONCLUSION 
The iterative DFP multiplier presented in this research includes 

the floating point extensions to the iterative DFxP multiplier 

design of [10] in terms of exponent processing, rounding, and 

exception detection and handling. This DFP multiplier design is 

in compliance with IEEE 754-2008. The VHDL code for a 32 

bit DFP multiplier is synthesized to find the area and delay using 

Leonardo Spectrum from Mentor Graphics Corporation with 

ASIC Library. The proposed design and the design in [4] for the 

DFP Multiplication are synthesized in the same environment. A 

delay reduction of 25.12% is achieved because of the initiation 

of rounding process during the DFxP multiplication. This 

parallelism decreases the delay of the last cycle, which in turn 

reduces the worst case period and increases the throughput. 

When multiplying two DFP numbers with ‘n’ digit significands, 

using this approach the worst case latency is ‘n+2’ cycles, and 

initiation interval is ‘n+1’ cycles. Novel features of this 

multiplier include the DFxP multiplication using RPS algorithm, 

on-the-fly generation of the sticky bit and the initiation of 

rounding process during the DFxP multiplication. 
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Worst cycle time  
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32-bit DFP 
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time (ns) 
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