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Secure Transmission for Nano-Memories using 
EG-LDPC 

 

      

 

 

ABSTRACT  
Memory cells have been protected from soft errors for more than 

a decade; due to the increase in soft error rate in logic circuits, 

the encoder and decoder circuitry around the memory blocks 

have become susceptible to soft errors as well and must also be 

protected. Here introducing a new approach to design fault-

secure encoder and decoder circuitry for memory designs. The 

key novel contribution of this paper is identifying and defining a 

new class of error-correcting codes whose redundancy makes 

the design of fault-secure detectors (FSD) particularly simple 

and further quantify the importance of protecting encoder and 

decoder circuitry against transient errors. By using that 

Euclidean Geometry Low-Density Parity-Check (EG-LDPC) 

codes have the fault-secure detector capability. Using some of 

the smaller EG-LDPC codes, can tolerate bit or nanowire defect 

rates of 10% and fault rates of 10-18  upsets/device/cycle, 

achieving a FIT rate at or below one for the entire memory 

system and a memory density of 1011 bit/cm2  with nanowire 

pitch of 10 nm for memory blocks of 10 Mb or larger. Larger 

EG-LDPC codes can achieve even higher reliability and lower 

area overhead. 

 

Index Terms—Decoder, encoder, memory, nanotechnology 

 

1. INTRODUCTION 
Nanotechnology provides smaller, faster, and lower energy 

devices which allow more powerful and compact circuitry; 

however, these benefits come with a cost—the nanoscale 

devices may be less reliable. Thermal- and shot-noise 

estimations [1], [2] alone suggest that the transient fault rate of 

an individual nanoscale device (e.g., transistor or nanowire) may 

be orders of magnitude higher than today’s devices ands also 

combinational logic to be susceptible to transient faults in 

addition to storage cells and communication channels. 

Therefore, the paradigm of protecting only memory cells and 

assuming the surrounding circuitries (i.e., encoder and decoder) 

will never introduce errors is no longer valid. This paper, 

introduces a fault-tolerant nanoscale memory architecture which 

tolerates transient faults both in the storage unit and in the 

supporting logic (i.e., encoder, decoder (corrector), and detector 

circuitries). Particularly, identify a class of error-correcting 

codes (ECCs) that guarantees the existence of a simple fault-

tolerant detector design. This class satisfies a new, restricted 

definition for ECCs which guarantees that the ECC codeword 

has an appropriate redundancy structure such that it can detect 

multiple errors occurring in both the stored codeword in 

memory and the surrounding circuitries and this type of error-

correcting codes, fault-secure detector capable ECCs (FSD-

ECC). By introducing fault-secure detection unit to design a 

fault-tolerant encoder and corrector by monitoring their outputs. 

If a detector detects an error in either of these units, that unit 

must repeat the operation to generate the correct output vector. 

Using this retry technique, we can correct potential transient 

errors in the encoder and corrector outputs and provide a fully 

fault-tolerant memory system. 

 

2. RELATED WORK 
Traditionally, memory cells were the only circuitry susceptible 

to transient faults, and all the supporting circuitries around the 

memory (i.e., encoders and decoders) were assumed to be fault-

free. As a result most of prior work designs for fault-tolerant 

memory systems focused on protecting only the memory cells 

and also by continuous scaling down feature sizes or use sub 

lithographic devices, the surrounding circuitries of the memory 

system will also be susceptible to permanent defects and 

transient faults [3].One approach to avoid the reliability problem 

in the surrounding circuitries is to implement these units with 

more reliable devices (e.g., more reliable CMOS technologies 

[4], [5]). However, from an area, performance, and power 

consumption point of view it is beneficial to implement 

encoders and decoders with scaled feature size or 

nanotechnology devices. Consequently, it is important to 

remove the reliability barrier for these logic circuits so they can 

be implemented with scaled feature size or nanotechnology 

devices. 

 

3. SYSTEM OVERVIEW 
An overview of proposed reliable memory system is shown in 

Fig. 1 and is described in the following. The information bits are 

fed into the encoder to encode the information vector, and the 

fault secure detector of the encoder verifies the validity of the 

encoded vector. If the detector detects any error, the encoding 

operation must be redone to generate the correct codeword. The 

codeword is then stored in the memory. During memory access 

operation, the stored codewords will be accessed from the 

memory unit. Codewords are susceptible to transient faults 

while they are stored in the memory; therefore a corrector unit is 

designed to correct potential errors in the retrieved codewords. 

In our design (see Fig. 1) all the memory words pass through the 

corrector and any potential error in the memory words will be 

corrected. Similar to the encoder unit, a fault-secure detector 

monitors the operation of the corrector unit. All the units shown 

in Fig. 1 are implemented in fault-prone, nanoscale circuitry; the 

only component which must be implemented in reliable circuitry 

are two OR gates that accumulate the syndrome bits for the 

detectors (shown in Fig. 2). Data bits stay in memory for a 

number of cycles and, during this period, each memory bit  

can be upset by a transient fault with certain 

probability. Therefore, transient errors accumulate in the 
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memory words over time. In order to avoid accumulation of too 

many errors in any memory word that surpasses the code 

correction capability, the system must perform memory 

scrubbing. Memory scrubbing is the process of periodically 

reading memory words from the memory, correcting any 

potential errors, and writing them back into the memory (e.g., 

[6]). 

 

                       

        Fig. 1. Overview of proposed system 

 

Fig. 2. Fault-secure detector for (15, 7, 5) EG-LDPC code.  

 

4. DESIGN STRUCTURE 
 The design structure of the encoder, corrector, and detector 

units of our proposed fault-tolerant memory system is shown 

below. Before going into the design structure details we start 

with a brief overview of the sub-lithographic memory 

architecture model. 

4.1. NanoMemory Architecture Model 
Here NanoMemory [7],[4]and NanoPLA [8] architectures to 

implement the memory core and the supporting logic, 

respectively. NanoMemory and NanoPLA are based on 

nanowire crossbars [9],[10]. the NanoMemory architecture 

developed in[7],[4] can achieve greater than 1011 b/cm2 density 

even after including the lithographic-scale address wires and 

defects. This design uses a nanowire crossbar to store memory 

bits and a limited number of lithographic scale wires for address 

and control lines. Fig. 3 shows a schematic overview of this 

memory structure. The fine crossbar shown in the center of the 

picture stores one memory bit in each crossbar junction. To be 

able to write the value of each bit into a junction, the two 

nanowires crossing that junction must be uniquely selected and 

an adequate voltage must be applied to them (e.g., [11], [12]). 

The nanowires can be uniquely selected through the two address 

decoders located on the two sides of the memory core.        

 
 

Fig.3. Structure of NanoMemory core 

 

4.2. Banked Memory                                                                                                                             
Large memories are conventionally organized as sets of smaller 

memory blocks called banks. The reason for breaking a large 

memory into smaller banks is to trade off 

     
 

Fig. 4. Banked memory organization 
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Overall memory density for access speed and reliability. 

Excessively small bank sizes will incur a large area overhead for 

memory drivers and receivers. Large memory banks require 

long rows and columns which results in high capacitance wires 

that consequently increases the delay. Furthermore long wires 

are more susceptible to breaks and bridging defects. Therefore 

excessively large memory banks have high defect rate and low 

performance. The memory system overview shown in Fig. 1 can 

be generalized to multiple banks as shown in Fig.4, Fig.5 shows 

a banked memory organization.  

 
 
Fig. 5. Banked memory organization with cluster size of 2. 

 

4.3. Fault Secure Detector 
The core of the detector operation is to generate the syndrome 

vector, which is basically implementing the following vector-

matrix multiplication on the received encoded vector c and 

parity-check matrix H: s = c×HT, and therefore each bit of the 

syndrome vector is the product of the following vector-vector 

multiply: si = c · hi T , where hi T is the transposed of the ith 

row of the parity-check matrix. The above product is a linear 

binary sum over digits of c where the corresponding digit in hi is 

1. This binary sum is implemented with an xor gate. Since the 

row weight of the parity-check matrix is P , to generate one digit 

of the syndrome vector we need a P-input xor gate, or (P− 1) 2-

input xor gates in a tree structure. For the whole detector, it 

takes n(P − 1) 2-input xor gates. An error is detected if any of 

the syndrome bits has a nonzero value. The final error detection 

signal is implemented by an or function of all the syndrome put 

of this n-input or gate is the error detector signal. 

4.4. Encoder 
An n-bit codeword, which encodes a n-bit information Vector i 

is generated by multiplying the n-bit information vector with a 

kXn bit generator matrix; i.e., c=i.G. EG-LDPC codes are not 

systematic and the information bits must be decoded from the 

encoded vector, which is not desirable for our fault-tolerant 

approach due to the further complication and delay that it adds 

to the operation. However, these codes are cyclic codes. We 

used the procedure to convert the cyclic generator matrices to 

systematic generator matrices for all the EG-LDPC codes under 

consideration shown in Fig.6.The encoded vector consists of 

information bits followed by parity bits, where each parity bit is 

simply an inner product of information vector and a column of 

X, from G=[I:X] 

 

Fig. 6. Generator matrix for the (15, 7, 5) EG-LDPC in 

systematic format; note the identity matrix in the left columns. 
 

4.5. Corrector 

One-step majority-logic correction is a fast and relatively 

compact error-correcting technique [13]. There is a limited class 

of ECCs that are one-step-majority correctable which include 

type-I two-dimensional EG-LDPC. 

 

4.5.1. One-Step Majority-Logic Corrector 
One-step majority logic correction is the procedure that 

identifies the correct value of a each bit in the codeword directly 

from the received codeword; this is in contrast to the general 

message-passing error correction strategy (e.g., [14]) which may 

demand multiple iterations of error diagnosis and trial 

correction. Avoiding iteration makes the correction latency both 

small and deterministic. This technique can be implemented 

serially to provide a compact implementation or in parallel to 

minimize correction latency. This method consists of two parts: 

1) generating a specific set of linear sums of the received vector 

bits and 2) finding the majority value of the computed linear 

sums. The majority value indicates the correctness of the code-

bit under consideration; if the majority value is 1, the bit is 

inverted, otherwise it is kept unchanged. The circuit 

implementing a serial one-step majority logic corrector for (15, 

7, 5) EG-LDPC code is shown in Fig. 7. 
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Fig. 7. Serial one-step majority logic corrector structure to correct last bit (bit 14th) of 15-bit (15, 7, 5) EG-LDPC code. 
 

4.5.2. Majority Circuit Implementation  
Here majority circuit implementation gate use Sorting Networks 

the majority gate has application in many other error-correcting 

codes, and this compact implementation can improve many 

other applications. We use binary Sorting Networks [15] to do 

the sort operation of the second step efficiently. An -input 

sorting network is the  

Structure that sorts a set of n bits, using 2-bit sorter building 

blocks. Fig. 8(a) shows a 4-input sorting network. Each of the 

vertical lines represents one comparator which compares two 

bits and assigns the larger one to the top output and the smaller 

one to the bottom [see Fig. 8(b)]. The four-input sorting 

network, has five comparator blocks, where each block consists 

of two two-input gates; overall the four-input sorting network 

consists of ten two-input gates in total. 

 
Fig. 8. (a) Four-input sorting network; each vertical line shows a 

one-input comparator. (b) One comparator structure. 

 

4.5.3. Serial Corrector 
As mentioned earlier, the same one-step majority-logic corrector 

can be used to correct all the n bits of the received codeword of 

a cyclic code. To correct each code-bit, the received encoded 

vector is cyclic shifted and fed into to the XOR gates as shown 

in Fig. 7. The serial majority corrector takes cycles to correct an 

erroneous codeword. If the fault rate is low, the corrector block 

is used infrequently; since the common case is error-free 

codewords, the latency of the corrector will not have a severe 

impact on the average memory read latency. The serial corrector 

must be placed off the normal memory read path. This is shown 

in Fig. 9. The memory words retrieved from the memory unit 

are checked by detector unit. If the detector detects an error, the 

memory word is sent to the corrector unit to be corrected, which 

has the latency of the detector plus the round latency of the 

corrector. 

 

4.5.4. Parallel Corrector 
 For high error rates, the corrector is used more frequently and 

its latency can impact the system performance. Therefore we can 

implement a parallel one-step majority corrector which is 

essentially copies of the single one-step majority-logic corrector. 

Fig. 1 shows a system integration using the parallel corrector. 

All the memory words are pipelined through the parallel 

corrector. 

 

                                     
  

Fig. 9. Partial system overview with serial corrector. 
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This way the corrected memory words are generated 

every cycle. The detector in the parallel case monitors the 

operation of the corrector, if the output of the corrector is 

erroneous; the detector signals the corrector to repeat the 

operation. Note that faults detected in a nominally corrected 

memory word arise solely from faults in the detector and 

corrector circuitry and not from faults in the memory word. 

Since detector and corrector circuitry are relatively small 

compared to the memory system, the failure rate of these units is 

relatively low. 

 

5. SYSTEM ANALYSIS 
5.1. Performance Analysis 
Here high scrubbing rates will decrease the time spent correcting 

data at the cost of additional cycles lost to scrubbing. As you can 

see in Figure 1, when there is no error in the memory word, the 

memory words are pipelined through the detector and therefore 

we can read one word per cycle without any throughput loss. If 

we select our memory word size and scrubbing rate 

appropriately, the vast majority of read operations can take this 

fast path.  

however, when the detector observers an error, the memory 

word must pass through the corrector to be corrected. The total 

number of cycles that will be lost is equal to the latency of the 

corrector and the detector for our serial corrector design, the 

main latency is due to the corrector. For larger codes, where the 

serialized corrector can take a long time, multiple copies of the 

corrector can be used to reduce the throughput loss. longer 

scrubbing intervals increase the number of errors accumulated in 

the memory and therefore more retrieved memory words have to 

go through the correction operation.  

 

5.2. Area and Reliability Analysis 
Analyze the area overhead of the fault tolerant memory system 

using the banking structure as described in the above section4. 

Fig. 10 plots the total area per bit for different memory sizes, 

when the upset rate is 10-28 errors/device/cycle. The area of the 

memory banks are computed following the area model provided 

in [4]. The area of the supporting units (encoder, corrector, and 

detector) is computed using the area model of NanoPLA. 
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Fig. 10. Area of the memory system versus the memory size 

Fig. 11 plots the reliability of the systems that 

satisfy the throughput loss limit and reliability limit while 

achieving the minimum area overhead. All of the previous 

design points are for memory size of 1012 bits. For these  

 

Calculations we assume a memory unit with the following 

parameters: lithographic wire pitch of 105 nm (45 nm node 

[1]), nanowire pitch of 10 nm, defect rate of 0.01 per 

memory junction, and memory bank size of bits. 
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Fig. 11. FIT of EG-LDPC codes for a system with 1012 memory bits, memory bank size of 1 Mb, system frequency of 1 GHz, 

and the defect rate of 1% 
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6. CONCLUSION 
This paper work, presented a fully fault-tolerant memory 

system that is capable of tolerating errors not only in the 

memory bits but also in the supporting logic including the 

ECC encoder and corrector. Euclidean Geometry codes are 

part of a new subset of ECCs that have FSDs. Using these 

FSDs we design a fault-tolerant encoder and corrector, 

where the fault-secure detector monitors their operation. 

We also presented a unified approach to tolerate permanent 

defects and transient faults. This unified approach reduces 

the area overhead.  
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