
International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

13

Secure Transmission for Nano-Memories using
EG-LDPC

ABSTRACT
Memory cells have been protected from soft errors for more than

a decade; due to the increase in soft error rate in logic circuits,

the encoder and decoder circuitry around the memory blocks

have become susceptible to soft errors as well and must also be

protected. Here introducing a new approach to design fault-

secure encoder and decoder circuitry for memory designs. The

key novel contribution of this paper is identifying and defining a

new class of error-correcting codes whose redundancy makes

the design of fault-secure detectors (FSD) particularly simple

and further quantify the importance of protecting encoder and

decoder circuitry against transient errors. By using that

Euclidean Geometry Low-Density Parity-Check (EG-LDPC)

codes have the fault-secure detector capability. Using some of

the smaller EG-LDPC codes, can tolerate bit or nanowire defect

rates of 10% and fault rates of 10-18 upsets/device/cycle,

achieving a FIT rate at or below one for the entire memory

system and a memory density of 1011 bit/cm2 with nanowire

pitch of 10 nm for memory blocks of 10 Mb or larger. Larger

EG-LDPC codes can achieve even higher reliability and lower

area overhead.

Index Terms—Decoder, encoder, memory, nanotechnology

1. INTRODUCTION
Nanotechnology provides smaller, faster, and lower energy

devices which allow more powerful and compact circuitry;

however, these benefits come with a cost—the nanoscale

devices may be less reliable. Thermal- and shot-noise

estimations [1], [2] alone suggest that the transient fault rate of

an individual nanoscale device (e.g., transistor or nanowire) may

be orders of magnitude higher than today’s devices ands also

combinational logic to be susceptible to transient faults in

addition to storage cells and communication channels.

Therefore, the paradigm of protecting only memory cells and

assuming the surrounding circuitries (i.e., encoder and decoder)

will never introduce errors is no longer valid. This paper,

introduces a fault-tolerant nanoscale memory architecture which

tolerates transient faults both in the storage unit and in the

supporting logic (i.e., encoder, decoder (corrector), and detector

circuitries). Particularly, identify a class of error-correcting

codes (ECCs) that guarantees the existence of a simple fault-

tolerant detector design. This class satisfies a new, restricted

definition for ECCs which guarantees that the ECC codeword

has an appropriate redundancy structure such that it can detect

multiple errors occurring in both the stored codeword in

memory and the surrounding circuitries and this type of error-

correcting codes, fault-secure detector capable ECCs (FSD-

ECC). By introducing fault-secure detection unit to design a

fault-tolerant encoder and corrector by monitoring their outputs.

If a detector detects an error in either of these units, that unit

must repeat the operation to generate the correct output vector.

Using this retry technique, we can correct potential transient

errors in the encoder and corrector outputs and provide a fully

fault-tolerant memory system.

2. RELATED WORK
Traditionally, memory cells were the only circuitry susceptible

to transient faults, and all the supporting circuitries around the

memory (i.e., encoders and decoders) were assumed to be fault-

free. As a result most of prior work designs for fault-tolerant

memory systems focused on protecting only the memory cells

and also by continuous scaling down feature sizes or use sub

lithographic devices, the surrounding circuitries of the memory

system will also be susceptible to permanent defects and

transient faults [3].One approach to avoid the reliability problem

in the surrounding circuitries is to implement these units with

more reliable devices (e.g., more reliable CMOS technologies

[4], [5]). However, from an area, performance, and power

consumption point of view it is beneficial to implement

encoders and decoders with scaled feature size or

nanotechnology devices. Consequently, it is important to

remove the reliability barrier for these logic circuits so they can

be implemented with scaled feature size or nanotechnology

devices.

3. SYSTEM OVERVIEW
An overview of proposed reliable memory system is shown in

Fig. 1 and is described in the following. The information bits are

fed into the encoder to encode the information vector, and the

fault secure detector of the encoder verifies the validity of the

encoded vector. If the detector detects any error, the encoding

operation must be redone to generate the correct codeword. The

codeword is then stored in the memory. During memory access

operation, the stored codewords will be accessed from the

memory unit. Codewords are susceptible to transient faults

while they are stored in the memory; therefore a corrector unit is

designed to correct potential errors in the retrieved codewords.

In our design (see Fig. 1) all the memory words pass through the

corrector and any potential error in the memory words will be

corrected. Similar to the encoder unit, a fault-secure detector

monitors the operation of the corrector unit. All the units shown

in Fig. 1 are implemented in fault-prone, nanoscale circuitry; the

only component which must be implemented in reliable circuitry

are two OR gates that accumulate the syndrome bits for the

detectors (shown in Fig. 2). Data bits stay in memory for a

number of cycles and, during this period, each memory bit

can be upset by a transient fault with certain

probability. Therefore, transient errors accumulate in the

Siva Sreeramdas
Asst.Prof.,Dept.of ECE,AITS,

Rajampet,Andhra Pradesh, India.

S.Asif Hussain
Principal,JNTUniversity,

Pulivendula,Andhra Pradesh, India

Dr.M.N.Giri Prasad
M.tech(VLSI),AITS,

Rajampet,Andhra, India.

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

14

memory words over time. In order to avoid accumulation of too

many errors in any memory word that surpasses the code

correction capability, the system must perform memory

scrubbing. Memory scrubbing is the process of periodically

reading memory words from the memory, correcting any

potential errors, and writing them back into the memory (e.g.,

[6]).

 Fig. 1. Overview of proposed system

Fig. 2. Fault-secure detector for (15, 7, 5) EG-LDPC code.

4. DESIGN STRUCTURE
 The design structure of the encoder, corrector, and detector

units of our proposed fault-tolerant memory system is shown

below. Before going into the design structure details we start

with a brief overview of the sub-lithographic memory

architecture model.

4.1. NanoMemory Architecture Model
Here NanoMemory [7],[4]and NanoPLA [8] architectures to

implement the memory core and the supporting logic,

respectively. NanoMemory and NanoPLA are based on

nanowire crossbars [9],[10]. the NanoMemory architecture

developed in[7],[4] can achieve greater than 1011 b/cm2 density

even after including the lithographic-scale address wires and

defects. This design uses a nanowire crossbar to store memory

bits and a limited number of lithographic scale wires for address

and control lines. Fig. 3 shows a schematic overview of this

memory structure. The fine crossbar shown in the center of the

picture stores one memory bit in each crossbar junction. To be

able to write the value of each bit into a junction, the two

nanowires crossing that junction must be uniquely selected and

an adequate voltage must be applied to them (e.g., [11], [12]).

The nanowires can be uniquely selected through the two address

decoders located on the two sides of the memory core.

Fig.3. Structure of NanoMemory core

4.2. Banked Memory
Large memories are conventionally organized as sets of smaller

memory blocks called banks. The reason for breaking a large

memory into smaller banks is to trade off

Fig. 4. Banked memory organization

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

15

Overall memory density for access speed and reliability.

Excessively small bank sizes will incur a large area overhead for

memory drivers and receivers. Large memory banks require

long rows and columns which results in high capacitance wires

that consequently increases the delay. Furthermore long wires

are more susceptible to breaks and bridging defects. Therefore

excessively large memory banks have high defect rate and low

performance. The memory system overview shown in Fig. 1 can

be generalized to multiple banks as shown in Fig.4, Fig.5 shows

a banked memory organization.

Fig. 5. Banked memory organization with cluster size of 2.

4.3. Fault Secure Detector
The core of the detector operation is to generate the syndrome

vector, which is basically implementing the following vector-

matrix multiplication on the received encoded vector c and

parity-check matrix H: s = c×HT, and therefore each bit of the

syndrome vector is the product of the following vector-vector

multiply: si = c · hi T , where hi T is the transposed of the ith

row of the parity-check matrix. The above product is a linear

binary sum over digits of c where the corresponding digit in hi is

1. This binary sum is implemented with an xor gate. Since the

row weight of the parity-check matrix is P , to generate one digit

of the syndrome vector we need a P-input xor gate, or (P− 1) 2-

input xor gates in a tree structure. For the whole detector, it

takes n(P − 1) 2-input xor gates. An error is detected if any of

the syndrome bits has a nonzero value. The final error detection

signal is implemented by an or function of all the syndrome put

of this n-input or gate is the error detector signal.

4.4. Encoder
An n-bit codeword, which encodes a n-bit information Vector i

is generated by multiplying the n-bit information vector with a

kXn bit generator matrix; i.e., c=i.G. EG-LDPC codes are not

systematic and the information bits must be decoded from the

encoded vector, which is not desirable for our fault-tolerant

approach due to the further complication and delay that it adds

to the operation. However, these codes are cyclic codes. We

used the procedure to convert the cyclic generator matrices to

systematic generator matrices for all the EG-LDPC codes under

consideration shown in Fig.6.The encoded vector consists of

information bits followed by parity bits, where each parity bit is

simply an inner product of information vector and a column of

X, from G=[I:X]

Fig. 6. Generator matrix for the (15, 7, 5) EG-LDPC in

systematic format; note the identity matrix in the left columns.

4.5. Corrector

One-step majority-logic correction is a fast and relatively

compact error-correcting technique [13]. There is a limited class

of ECCs that are one-step-majority correctable which include

type-I two-dimensional EG-LDPC.

4.5.1. One-Step Majority-Logic Corrector
One-step majority logic correction is the procedure that

identifies the correct value of a each bit in the codeword directly

from the received codeword; this is in contrast to the general

message-passing error correction strategy (e.g., [14]) which may

demand multiple iterations of error diagnosis and trial

correction. Avoiding iteration makes the correction latency both

small and deterministic. This technique can be implemented

serially to provide a compact implementation or in parallel to

minimize correction latency. This method consists of two parts:

1) generating a specific set of linear sums of the received vector

bits and 2) finding the majority value of the computed linear

sums. The majority value indicates the correctness of the code-

bit under consideration; if the majority value is 1, the bit is

inverted, otherwise it is kept unchanged. The circuit

implementing a serial one-step majority logic corrector for (15,

7, 5) EG-LDPC code is shown in Fig. 7.

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

16

Fig. 7. Serial one-step majority logic corrector structure to correct last bit (bit 14th) of 15-bit (15, 7, 5) EG-LDPC code.

4.5.2. Majority Circuit Implementation
Here majority circuit implementation gate use Sorting Networks

the majority gate has application in many other error-correcting

codes, and this compact implementation can improve many

other applications. We use binary Sorting Networks [15] to do

the sort operation of the second step efficiently. An -input

sorting network is the

Structure that sorts a set of n bits, using 2-bit sorter building

blocks. Fig. 8(a) shows a 4-input sorting network. Each of the

vertical lines represents one comparator which compares two

bits and assigns the larger one to the top output and the smaller

one to the bottom [see Fig. 8(b)]. The four-input sorting

network, has five comparator blocks, where each block consists

of two two-input gates; overall the four-input sorting network

consists of ten two-input gates in total.

Fig. 8. (a) Four-input sorting network; each vertical line shows a

one-input comparator. (b) One comparator structure.

4.5.3. Serial Corrector
As mentioned earlier, the same one-step majority-logic corrector

can be used to correct all the n bits of the received codeword of

a cyclic code. To correct each code-bit, the received encoded

vector is cyclic shifted and fed into to the XOR gates as shown

in Fig. 7. The serial majority corrector takes cycles to correct an

erroneous codeword. If the fault rate is low, the corrector block

is used infrequently; since the common case is error-free

codewords, the latency of the corrector will not have a severe

impact on the average memory read latency. The serial corrector

must be placed off the normal memory read path. This is shown

in Fig. 9. The memory words retrieved from the memory unit

are checked by detector unit. If the detector detects an error, the

memory word is sent to the corrector unit to be corrected, which

has the latency of the detector plus the round latency of the

corrector.

4.5.4. Parallel Corrector
 For high error rates, the corrector is used more frequently and

its latency can impact the system performance. Therefore we can

implement a parallel one-step majority corrector which is

essentially copies of the single one-step majority-logic corrector.

Fig. 1 shows a system integration using the parallel corrector.

All the memory words are pipelined through the parallel

corrector.

Fig. 9. Partial system overview with serial corrector.

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

17

This way the corrected memory words are generated

every cycle. The detector in the parallel case monitors the

operation of the corrector, if the output of the corrector is

erroneous; the detector signals the corrector to repeat the

operation. Note that faults detected in a nominally corrected

memory word arise solely from faults in the detector and

corrector circuitry and not from faults in the memory word.

Since detector and corrector circuitry are relatively small

compared to the memory system, the failure rate of these units is

relatively low.

5. SYSTEM ANALYSIS
5.1. Performance Analysis
Here high scrubbing rates will decrease the time spent correcting

data at the cost of additional cycles lost to scrubbing. As you can

see in Figure 1, when there is no error in the memory word, the

memory words are pipelined through the detector and therefore

we can read one word per cycle without any throughput loss. If

we select our memory word size and scrubbing rate

appropriately, the vast majority of read operations can take this

fast path.

however, when the detector observers an error, the memory

word must pass through the corrector to be corrected. The total

number of cycles that will be lost is equal to the latency of the

corrector and the detector for our serial corrector design, the

main latency is due to the corrector. For larger codes, where the

serialized corrector can take a long time, multiple copies of the

corrector can be used to reduce the throughput loss. longer

scrubbing intervals increase the number of errors accumulated in

the memory and therefore more retrieved memory words have to

go through the correction operation.

5.2. Area and Reliability Analysis
Analyze the area overhead of the fault tolerant memory system

using the banking structure as described in the above section4.

Fig. 10 plots the total area per bit for different memory sizes,

when the upset rate is 10-28 errors/device/cycle. The area of the

memory banks are computed following the area model provided

in [4]. The area of the supporting units (encoder, corrector, and

detector) is computed using the area model of NanoPLA.

0

2000

4000

6000

7 8 9 10 11 12 13 14

A
re

a
 n

m
 s

q
.p

e
r

b
it

log (Memory)

Area per Memory bit (EG-LDPC)

(15,7,5) 1

(63,37,9) 1

(63,37,9) 2

(255,175,17) 2

(255,175,17) 3

(255,175,17) 4

Fig. 10. Area of the memory system versus the memory size

Fig. 11 plots the reliability of the systems that

satisfy the throughput loss limit and reliability limit while

achieving the minimum area overhead. All of the previous

design points are for memory size of 1012 bits. For these

Calculations we assume a memory unit with the following

parameters: lithographic wire pitch of 105 nm (45 nm node

[1]), nanowire pitch of 10 nm, defect rate of 0.01 per

memory junction, and memory bank size of bits.

-100

-50

0

50

-28 -26 -24 -22 -20 -18

lo
g

(F
IT

)

log(pf)

FIT of the Memory System (EG-LDPC)

(15,7,5) 0

(15,7,5) 1

(63,37,9) 0

(63,37,9) 1

(63,37,9) 2

Fig. 11. FIT of EG-LDPC codes for a system with 1012 memory bits, memory bank size of 1 Mb, system frequency of 1 GHz,

and the defect rate of 1%

International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

18

6. CONCLUSION
This paper work, presented a fully fault-tolerant memory

system that is capable of tolerating errors not only in the

memory bits but also in the supporting logic including the

ECC encoder and corrector. Euclidean Geometry codes are

part of a new subset of ECCs that have FSDs. Using these

FSDs we design a fault-tolerant encoder and corrector,

where the fault-secure detector monitors their operation.

We also presented a unified approach to tolerate permanent

defects and transient faults. This unified approach reduces

the area overhead.

7. ACKNOWLEDGMENT
This work is supported by Annamacharya Institute of

Technology and Sciences. And thanks for valuable

references provided by the authors. Any opinions, findings,

and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily

reflect their views.

8. REFERENCES
[1] M. Forshaw, R. Stadler, D. Crawley, and K. Nikolic´,

“A short review of nanoelectronic architectures,”

Nanotechnology, vol. 15, pp.S220–S223, 2004.

[2] J. Kim and L. Kish, “Error rate in current-controlled

logic processors with shot noise,” Fluctuation Noise

Lett., vol. 4, no. 1, pp. 83–86, 2004.

[3] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta,

and C. Dai, “Impact of CMOS process scaling and

SOI on the soft error rates of logic processes,” in Proc.

Symp. VLSI, 2001, pp. 73–74.

 [4] A. DeHon, S. C. Goldstein, P. J. Kuekes, and P.

Lincoln, “Non-photolithographic nanoscale memory

density prospects,” IEEE Trans.Nanotechnol., vol. 4,

no. 2, pp. 215–228, Feb. 2005.

[5] F. Sun and T. Zhang, “Defect and transient fault-

tolerant system design for hybrid CMOS/nanodevice

digital memories,” IEEE Trans. Nanotechnol.,vol. 6,

no. 3, pp. 341–351, Jun. 2007.

[6] A. Saleh, J. Serrano, and J. Patel, “Reliability of

scrubbing recoverytechniques for memory systems,”

IEEE Trans. Reliab., vol. 39, no. 1,pp. 114–122, Jan.

1990.

 [7] A. DeHon, “Deterministic addressing of nanoscale

devices assembled at sublithographic pitches,” IEEE

Trans. Nanotechnol., vol. 4, no. 6,pp. 681–687, 2005.

[8] A. DeHon, “Nanowire-based programmable

architectures,” ACM J. Emerging Technol. Comput.

Syst., vol. 1, no. 2, pp. 109–162, 2005.

 [9] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R.

Stewart, J.O. Jeppesen, K. A. Nielsen, J. F. Stoddart,

and R. S. Williams,

“Nanoscale molecular-switch crossbar circuits,”

Nanotechnology, vol. 14, pp. 462–468, 2003.

[10] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E.

Johnston- Halperin, E. DeIonno, Y. Luo, B. A. Sheriff,

K. Xu, Y. S. Shin,H.-R. Tseng, J. F. Stoddart, and J.

R. Heath, “A 160-kilobit molecular electronic memory

patterned at 10 11 bits per square centimeter,”Nature,

vol. 445, pp. 414–417, Jan. 25, 2007

[11] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S.

Williams,J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart,

D. L. Olynick, and E.Anderson, “Nanoscale

molecular-switch devices fabricated by imprint

lithography,” Appl. Phys. Lett., vol. 82, no. 10, pp.

1610–1612, 2003.

[12] D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen,

R. S.Williams, J.O. Jeppesen, K. A. Nielsen, and J. F.

Stoddart, “Molecule-independent electrical switching

in pt/organic monolayer/ti devices,” Nanoletters,vol.

4, no. 1, pp. 133–136, 2004.

[13] S. Lin and D. J. Costello, Error Control Coding, 2nd

ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.

 [14] M. Sipser and D. Spielman, “Expander codes,” IEEE

Trans. Inf.Theory, vol. 42, no. 6, pp. 1710–1722, Nov.

1996

[15] D. E. Knuth, The Art of Computer Programming, 2nd

ed. Reading,MA: Addison Wesley, 2000.

