
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

12

 Fault Injection Analysis on a Reed Solomon Decoder

M M Dhanvijay
Lecturer,

MMIT ,Department of Electronics and Telecommunicaton Engineering, University of Pune
Pune,India

ABSTRACT
 This paper shows improvement in the efficiency of self checking

circuit with the use of exhaustive fault injection with analysis of

property of circuit is shown. Experimental results from fault

injection on a Reed-Solomon Decoder demonstrated that by

observing the occurred errors and the correspondent detection

module has been possible to reduce the number of detection module,

while paying a small reduction of the percentage of SEUs that can be

detected.

General Terms

Single Event Upsets,simulation.

Keywords

Reed Solomon Codes, SEUs, Fault injection, Reed Solomon decoder

1. INTRODUCTION

Reed-Solomon (RS) codes are having the ability to correct single

upsets per coded word with reduced area and performance overhead

and are widely used for protecting memories against Single Event

Upsets (SEUs). However, a SEU within the RS decoder can give a

wrong data word even if no errors occurs during the codeword

transmission. Therefore, also the RS decoder must be designed to

with fault tolerance capabilities in order to realize high reliable

systems. When the analysis of SEUs is the major concern

,simulation-based fault injection approaches allow early evaluation of

the system dependability when only the model is available. However,

considering the large complexity of such circuitry, a huge amount of

CPU time may be required, thus limiting its usability to exhaustive

fault tolerance capabilities evaluations. Instead, we used a partially

reconfiguration based fault injection technique able to run in a

fraction of the time simulation-based approaches require, supporting

the execution of exhaustive fault injection campaigns.

2. FAULT INJECTION

The fault injection system we developed is composed by: a host

computer; an FPGA board equipped with a Virtex II-Pro device, and

a serial communication link to the host computer. The host computer

is used for configuring the Virtex-II Pro, for the generation of a fault

location list and to collect the results in terms of fault-effect

classification.

2.1 Architectural Scheme

 Power PC Memory

Timing
Unit

ICAP

UUT

IP Memory

IP Core

OPB Bus

Fig. 1 Architectural scheme of proposed fault injection approach

The FPGA board is composed of four components interconnected by

an On-chip Peripheral Bus (OPB) and its layout is depicted in Figure

1.

• Timing Unit (TU): it drives the UUT clock and reset. Aport

connected to the OPB Bus defines its functionality.

• Unit Under Test (UUT): it is the circuit under test. Its input and

output ports are connected to the OPB while the reset and clock

signals are connected to the TU.

• ICAP: it is the Internal Configuration Access Port provided by last

generations of Xilinx FPGAs. It allows the access to all the memory

elements (Flip-Flops or Latches)

of the UUT to perform the partial reconfiguration.

• PowerPC microprocessor: it is hardwired in the FPGA device,

performs the fault injection of SEUs in the UUT and communicates

the fault-injection experiment results

to the host computer.

2.2 Fault Injection Execution Flow

The fault injection execution flow is a two-phase process composed

of a preliminary phase followed by an execution phase.

 The preliminary phase is illustrated in Figure 2. This phase is

automatically executed by the host computer using either internal

developed tools and commercial tools provided by Xilinx.

During this phase the Unit Under Test is inserted within the FPGA

device layout circuit description. This actions is performed by the

UUT Wrapper Inserting Tool that gene-rates a UUT wrapper inserted

within the FPGA device layout description. This wrapper links the

input and output ports with the OPB Bus and the clock and reset

signals to the Timing Unit.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

13

The FPGA bitstream is obtained following the FPGA

implementation tools chain provided by Xilinx. In particular the
BITGEN tool is used to obtain the bitstream that is loaded within the

FPGA configuration memory and to generate a Logic Allocation file

that contains a list of all the logic resources used within the FPGA.

The Fault Location List Generator reads the Logic Allocation file

and generates a Fault Location List where each fault location is

characterized by an identifier of the correspondent flip-flop or latches

position in the FPGA.

Fig. 2 Preliminary phase of fault injection execution flow

The execution phase is executed by the PowerPC and it consists of

three parts: pre-running, campaign and fault injection results. At first,

it loads within the PowerPC memory the test patterns that will be

applied and initializes the UUT. Secondly, it performs a golden run

of the UUT storing the Golden Output (GO) produced.

2.3 Injection of Each SEU

The Campaign performs the fault injection of the selected number

of faults (NF). The following steps are executed for the injection of

each SEU:

 The UUT is reseted.

 A fault injection time (FT) and a fault location (FL) are

randomly selected.

 The execution of the UUT is started until reached the clock

cycle FT. This operation is performed by configuring a Timing

Unit’s counter at the FT value.

 The fault location FL is read. This procedure reads directly the

content of the flip-flop or latches from the configuration

memory using the ICAP port.

 The FPGA is partially reconfigured writing the opposite value

within the content of the flip-flop or latches identified by FL.

Therefore a SEU is injected in the considered fault location.

 The execution of the UUT is continued until the end of the run.

It monitors the UUT output ports and comparing their value

with the UUT golden outputs. It finally updates a fault

classification list (FCL) with the results obtained by the fault

injection and classifying each injected SEU as silent, if the

output produced by the UUT are equal to the GO; wrong

answer, if a mismatch was detected.

3. FAULT DETECTION

An RS(n,k) code [4] is defined by representing the data symbols as

elements of the Galois Field GF(2m) and the over-all data word is

treated as a polynomial d(x) with coefficient in GF(2m). The Reed-

Solomon codeword is then generated by using the generator

polynomial g(x). All valid codewords are exactly divisible by g(x).

The general form of g(x) is:

g(x) = (x + αi)(x + αi+1) . . . (x + αi+2t)

where 2t = n − k and α is a primitive element of the field. Therefore

the codeword is a polynomial c(x) of degree n−1 such as c(x) mod

g(x) = 0 .

3.1 RS Decoder

The RS decoder is able to correct up to t errors in a received word

providing as output the corrected codeword. Two main properties can

be defined for a fault free RS decoder .

Property 1: The decoder output is always a codeword.

Property 2: The Hamming distance between the received word and

the output codeword is not greater than t.

Where the Hamming distance of two polynomials a(x) and b(x) of

degree n is the number of coefficients of the same degree that are

different. When the fault inside the decoder is activated, i.e. the

output is different from the correct one due

to the presence of the fault, two cases occur:

 The decoder gives as output a non codeword, and this case

can be detected by property 1.

 If the output of the faulty decoder is a wrong codeword the

detection of this fault is easily performed by evaluating the

Hamming weight of the error polynomial e(x).

The error polynomial can be provided by the decoder as an

additional output or can be evaluated by comparing the received

polynomial and the provided output c(x).

4. SELF CHECKING RS DECODER

This approach is completely independent by the assumed fault set

and it is based only on the assumption that the fault free behaviour of

the decoder provides always a codeword as output. To check if

properties 1 and 2 are respected some blocks can be added to the

decoder. They are:

• An optional error polynomial recovery block is needed if the

decoder do not provides at the output the error polynomial.

• Hamming weight counter, that checks the Hamming distance

between the received word and the output word of the RS decoder.

• Codeword checker, that checks if the output data of the RS decoder

form a correct codeword.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

14

 Fig. 3 Schematic of the self checking RS decoder

The codeword checker block checks if c(x) is exactly divisible for

the generator polynomial g(x).

4.1 Syndrome Calculation

The syndrome calculation performs the evaluation of the received

polynomial c(x) for the values of x that are roots of g(x). The

received polynomial is a codeword if and only if all the computed

syndromes are zero. Figure 4 shows the implementation of the

syndrome calculation block.

Fig.4 Syndrome calculation block

These blocks allow to detect a fault inside the RS decoder without

any knowledge on the implementation details of he decoder.

However, is possible that some of the blocks presented in this section

are not really needed for a certain

implementation of the decoder. The fault injection experiments of the

following section allows to identify which errors can occurs on the

decoder output when a fault occurs inside it and herefore which

blocks are really needed for fault detection.

5. EXPERIMENTATION

To perform the fault injection campaign an RS(255,239) decoder

with the additional blocks described in the previous section has been

implemented. The syndrome calculation block is composed by 16

elementary blocks described in

Fig. 4. For the fault injection campaign we call this vector S =

S0...S15. When a fault inside the decoder is activated and property 1

is not respected albeit one byte of the syndrome vector is different

from zero. The fault injection campaign has

been performed injecting in two runs.

5.1 First Run

During the first run of the fault injection experiment 1,000,000

SEU are injected and the outputs of the syndrome computation block

has been monitored. Monitoring these outputs, we are able to identify

if the fault is activated and if the erroneous output produced by the

decoder violates properties 1 or 2. If all the bytes of the syndrome

vectors are equal to zero, then the erroneous output violates property

2, else it violates property one. The results achieved from the fault

injection campaign report that the number of activated faults is

6,873,492 and the number of faults detected by the RS decoder is

6,873,310 which results in a fault detection of about 99.9974%. This

implies that excluding the Hamming counter from the scheme of the

self-checking RS decoder shown in Figure 3.1 however we obtain a

fault detection coverage of the RS decoder that is about 99.9974%.

5.2 Second Run

In the second run 100,000 SEU are injected and the 16 bytes of the

syndrome Vector has been monitored to check which bytes are able

to detect an activated fault. The aim of these run is to find a subset of

the syndrome elements that

detect a high percentage of fault. The overall activated faults was

98174 .

6. RESULT AND DISCUSSION

The fault detected by any single element of the syndrome vector S

are reported in table I. The S1 element of the syndrome vector

detects most of the SEUs provoking faults. Therefore use only the
block computing S1 the system is able to detect 92% of the activated

fault. Instead, using the subset composed only by S1 and S3 we are

able to detect all the activated SEU faults. The fault injection

experiments show that excluding the Hamming Distance Counter

Block and using only the blocks computing S1 and S3 in the

codeword Checker we are able to detect about 99.9974 % percentage

of faults. In this case we save the logic resources needed to

implement the Hamming Distance Counter Block and 14 syndrome

element computation block. Instead, using also the Hamming

Distance Counter Block we are able to cope 100%.

TABLE I

FAULT COVERAGE OF SYNDROME VECTOR ELEMENTS

Syndrome

element

Detected

SEU’s

[%]

Syndrome

element

Detected

SEU’s

[%]

S0 7825 8 S1 90186 92

S2 41783 42 S3 84994 86

S4 27550 28 S5 12145 12

S6 42177 42 S7 2114 2

S8 1134 1 S9 3811 4

S10 37268 38 S11 981 1

S12 6534 6 S13 719 0.7

S14 289 0.3 S15 119 0.1

7. CONCLUSIONS

 The result presented here shown how some blocks added to the

Reed Solomon decoder due to high level considerations about the

decoder functionality are not really necessary to obtain an high fault

detection coverage. The Hamming Counter block can be excluded

from the self-checking scheme with a very small reduction of the

fault tolerance capabilities. Moreover, a detailed analysis of the

syndrome vector outputs allows to reduce also the blocks computing

the syndrome only

to a small subset, without penalty in terms of percentage of detected

faults. This methodology to improve the efficiency of self-checking

structures is possible only if an extensive fault injection campaign

can be performed in a fast and flexible

environment. The fault injection technique used in this seminar is a

good candidate for this task, because is able to perform injection

campaigns in a fraction of the time simulation-based approaches

require.

8. ACKNOWLEDGMENTS

I am thankful to my guide Mr. S. M. Deokar and HOD Mr. Lokhande

for their cooperation and support.

T am thankful to my kids and husband.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

15

9. REFERENCES

[1] Hyunman Chang; Myung H. Sunwoo, “A low complexity Reed-

Solomon architecture using the Euclid’s algorithm” Circuits and

Systems, 1999.ISCAS ’99. Proceedings of the 1999 IEEE

International Symposium on Volume 1, 30 May-2 June 1999

Page(s):513 - 516 vol.1

[2] Syed Shahzad Shah, Saqib Yaqub, and Faisal Suleman, Self-

correcting codes conquer noise Part 2: Reed-Solomon codecs,

Chameleon Logics, (Part 1: Viterbi Codecs), 2001.

[3] G.C. Cardarilli, A. Leandri, P. Marinucci, M. Ottavi, S.

Pontarelli, M. Re,A. Salsano, “Design of a fault tolerant solid

state mass memory”, IEEE Transactions on Reliability, Vol. 52,

Issue 4, Dec. 2004, pp. 476 – 491

[4] R.E. Blahut, “Theory and Practice of Error Control Codes”,

Addison-Wesley Publishing Company,1983.

[5] Manual, Stratix Device Handbook. May 2005.

[6] Hanho Lee, A high-speed, low-complexity reed-solomon

decoder for optical communications.. IEEE Transactions on

Circuits and Systems II, PP, 2005.

[7] Hanho Lee High-Speed VLSI Architecture for Parallel Reed–

Solomon Decoder IEEE Transaction on very large scale

integration (VLSI) systems, Vol. 11, No. 2, April 2003.

[8] Andr´e S¨ulflow Rolf Drechsler Modeling a Fully Scalable

Reed-Solomon Encoder/Decoder over GF(pm) in System C

Proceedings of the 37th International Symposium on Multiple-

Valued Logic (ISMVL'07) 0-7695-2831-7/07, 2007.

[9] S. S. Shah, S. Yaqub, and F. Suleman. Self-correctin

codesconquer noise part2: Reed-solomon codecs. EDN,
March 15, 2001.

[10] B. Sklar. Digital Communications: Fundamentals and
Applications. Prentice-Hall, 2001.

