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ABSTRACT 
 This  paper shows  improvement in  the efficiency of self checking 

circuit with the use of exhaustive fault injection  with analysis of 

property of circuit is shown.  Experimental results from fault 

injection  on a Reed-Solomon Decoder demonstrated that by 

observing the occurred errors and the correspondent detection 

module has been possible to reduce the number of detection module, 

while paying a small reduction of the percentage of SEUs that can be 

detected. 
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Single Event Upsets,simulation. 
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1. INTRODUCTION 

Reed-Solomon (RS) codes are having the ability to  correct single 

upsets per coded word with reduced area and performance overhead 

and are widely used for protecting memories against Single Event  

Upsets (SEUs). However, a SEU within the RS decoder can give a 

wrong data word even if no errors occurs during the codeword 

transmission. Therefore, also the RS decoder must be designed to 

with fault tolerance capabilities in order to realize high reliable 

systems. When the analysis of SEUs is the major concern 

,simulation-based fault injection approaches allow early evaluation of 

the system dependability when only the model is available. However, 

considering the large complexity of such circuitry, a huge amount of 

CPU time may be required, thus limiting its usability to exhaustive 

fault tolerance capabilities evaluations. Instead, we used a partially 

reconfiguration based fault injection technique able to run in a 

fraction of the time simulation-based approaches require, supporting 

the execution of exhaustive fault injection campaigns. 

      

2. FAULT INJECTION 

The fault injection system we developed is composed by: a host 

computer; an FPGA board equipped with a Virtex II-Pro device, and 

a serial communication link to the host computer. The host computer 

is used for configuring the Virtex-II Pro, for the generation of a fault 

location list and to collect the results in terms of fault-effect 

classification. 

 

 

 

2.1  Architectural  Scheme 
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Fig. 1 Architectural scheme of proposed fault injection approach 

 
The FPGA board is composed of four components interconnected by 

an On-chip Peripheral Bus (OPB) and its layout is depicted in Figure 

1. 

• Timing Unit (TU): it drives the UUT clock and reset. Aport 

connected to the OPB Bus defines its functionality. 

• Unit Under Test (UUT): it is the circuit under test. Its input and 

output ports are connected to the OPB while the reset and clock 

signals are connected to the TU. 

• ICAP: it is the Internal Configuration Access Port provided by last 

generations of Xilinx FPGAs. It allows the access to all the memory 

elements (Flip-Flops or Latches) 

of the UUT to perform the partial reconfiguration. 

• PowerPC microprocessor: it is hardwired in the FPGA device, 

performs the fault injection of SEUs in the UUT and communicates 

the fault-injection experiment results 

to the host computer. 

 

2.2  Fault Injection Execution Flow 

The fault injection execution flow is a two-phase process composed 

of a preliminary phase followed by an execution phase.  

 The preliminary phase is illustrated in Figure 2. This phase is 

automatically executed by the host computer using either internal 

developed tools and commercial tools provided by Xilinx.  

During this phase the Unit Under Test is inserted within the FPGA 

device layout circuit description. This actions is performed by the 

UUT Wrapper Inserting Tool that gene-rates a UUT wrapper inserted 

within the FPGA device layout description. This wrapper links the 

input and output ports with the OPB Bus and the clock and reset 

signals to the Timing Unit.  
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The FPGA bitstream is obtained following the FPGA 

implementation tools chain provided by Xilinx. In particular the 
BITGEN tool is used to obtain the bitstream that is loaded within the 

FPGA configuration memory and to generate a Logic Allocation file 

that contains a list of all the logic resources used within the FPGA.  

The Fault Location List Generator reads the Logic Allocation file 

and generates a Fault Location List where each fault location is 

characterized by an identifier of the correspondent flip-flop or latches 

position in the FPGA. 

 

 
 

Fig. 2  Preliminary phase of fault injection execution flow 

 
The execution phase is executed by the PowerPC and it consists of 

three parts: pre-running, campaign and fault injection results. At first, 

it loads within the PowerPC memory the test patterns that will be 

applied and initializes the UUT. Secondly, it performs a golden run 

of the UUT storing the Golden Output (GO) produced. 

2.3  Injection of Each SEU 

The Campaign performs the fault injection of the selected number 

of faults (NF). The following steps are executed for the injection of 

each SEU: 

 The UUT is reseted. 

 A fault injection time (FT) and a fault location (FL) are 

randomly selected. 

 The execution of the UUT is started until reached the clock 

cycle FT. This operation is performed by configuring a Timing 

Unit’s counter at the FT value. 

 The fault location FL is read. This procedure reads directly the 

content of the flip-flop or latches from the configuration 

memory using the ICAP port. 

 The FPGA is partially reconfigured writing the opposite value 

within the content of the flip-flop or latches identified by FL. 

Therefore a SEU is injected in the considered fault location. 

 The execution of the UUT is continued until the end of the run. 

It monitors the UUT output ports and comparing their value 

with the UUT golden outputs. It finally updates a fault 

classification list (FCL) with the results obtained by the fault 

injection and classifying each injected SEU as silent, if the 

output produced by the UUT are equal to the GO; wrong 

answer, if a mismatch was detected. 

3. FAULT DETECTION 

An RS(n,k) code [4] is defined by representing the data symbols as 

elements of the Galois Field GF(2m) and the over-all data word is 

treated as a polynomial d(x) with coefficient in GF(2m). The Reed-

Solomon codeword is then generated by using the generator 

polynomial g(x). All valid codewords are exactly divisible by g(x). 

The general form of g(x) is: 

g(x) = (x + αi)(x + αi+1) . . . (x + αi+2t)  

where 2t = n − k and α is a primitive element of the field. Therefore 

the codeword is a polynomial c(x) of degree n−1 such as c(x) mod 

g(x) = 0 . 

3.1 RS Decoder 

The RS decoder is able to correct up to t errors in a received word 

providing as output the corrected codeword. Two main properties can 

be defined for a fault free RS decoder . 

Property 1: The decoder output is always a codeword. 

Property 2: The Hamming distance between the received word and 

the output codeword is not greater than t. 

Where the Hamming distance of two polynomials a(x) and b(x) of 

degree n is the number of coefficients of the same degree that are 

different. When the fault inside the decoder is activated, i.e. the 

output is different from the correct one due 

to the presence of the fault, two cases occur: 

 The decoder gives as output a non codeword, and this case 

can be detected by property 1. 

 If the output of the faulty decoder is a wrong codeword the 

detection of this fault is easily performed by evaluating the 

Hamming weight of the error polynomial e(x). 

The error polynomial can be provided by the decoder as an 

additional output or can be evaluated by comparing the received 

polynomial and the provided output c(x). 

4. SELF CHECKING RS DECODER 

This approach is completely independent by the assumed fault set 

and it is based only on the assumption that the fault free behaviour of 

the decoder provides always a codeword as output. To check if 

properties 1 and 2 are respected some blocks can be added to the 

decoder. They are: 

• An optional error polynomial recovery block is needed if the 

decoder do not provides at the output the error polynomial. 

• Hamming weight counter, that checks the Hamming distance 

between the received word and the output word of the RS decoder. 

• Codeword checker, that checks if the output data of the RS decoder 

form a correct codeword. 
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            Fig. 3  Schematic  of the self checking RS decoder 

The codeword checker block checks if c(x) is exactly divisible for 

the generator polynomial g(x). 

4.1  Syndrome Calculation 

The syndrome calculation performs the evaluation of the received 

polynomial c(x) for the values of x that are roots of g(x). The 

received polynomial is a codeword if and only if all the computed 

syndromes are zero. Figure 4 shows the implementation of the 

syndrome calculation block. 

 

 
 

Fig.4  Syndrome calculation block 

 
These blocks allow to detect a fault inside the RS decoder without 

any knowledge on the implementation details of he decoder. 

However, is possible that some of the blocks presented in this section 

are not really needed for a certain 

implementation of the decoder. The fault injection experiments of the 

following section allows to identify which errors can occurs on the 

decoder output when a fault occurs inside it and herefore which 

blocks are really needed for fault detection. 

5. EXPERIMENTATION 

To perform the fault injection campaign an RS(255,239) decoder 

with the additional blocks described in the previous section has been 

implemented. The syndrome calculation block is composed by 16 

elementary blocks described in 

Fig. 4. For the fault injection campaign we call this vector S = 

S0...S15. When a fault inside the decoder is activated and property 1 

is not respected albeit one byte of the syndrome vector is different 

from zero. The fault injection campaign has 

been performed injecting in two runs. 

5.1 First Run 

During the first run of the fault injection experiment 1,000,000 

SEU are injected and the outputs of the syndrome computation block 

has been monitored. Monitoring these outputs, we are able to identify 

if the fault is activated and if the erroneous output produced by the 

decoder violates properties 1 or 2. If all the bytes of the syndrome 

vectors are equal to zero, then the erroneous output violates property 

2, else it violates property one. The results achieved from the fault 

injection campaign report that the number of activated faults is 

6,873,492 and the number of faults detected by the RS decoder is 

6,873,310 which results in a fault detection of about 99.9974%. This 

implies that excluding the Hamming counter from the scheme of the 

self-checking RS decoder shown in Figure 3.1 however we obtain a 

fault detection coverage of the RS decoder that is about 99.9974%. 

5.2 Second  Run 

In the second run 100,000 SEU are injected and the 16 bytes of the 

syndrome Vector has been monitored to check which bytes are able 

to detect an activated fault. The aim of these run is to find a subset of 

the syndrome elements that 

detect a high percentage of fault. The overall activated faults was 

98174 . 

6. RESULT AND DISCUSSION  

The fault detected by any single element of the syndrome vector S 

are reported in table I. The S1 element of the syndrome vector 

detects most of the SEUs provoking faults. Therefore use only the 
block computing S1 the system is able to detect 92% of the activated 

fault. Instead, using the subset composed only by S1 and S3 we are 

able to detect all the activated SEU faults. The fault injection 

experiments show that excluding the Hamming Distance Counter 

Block and using only the blocks computing S1 and S3 in the 

codeword Checker we are able to detect about 99.9974 % percentage 

of faults. In this case we save the logic resources needed to 

implement the Hamming Distance Counter Block and 14 syndrome 

element computation block. Instead, using also the Hamming 

Distance Counter Block we are able to cope 100%. 

 

TABLE I 

FAULT COVERAGE OF SYNDROME  VECTOR ELEMENTS 

 

Syndrome 

element 

Detected 

SEU’s 

[%] 

 

Syndrome 

element 

Detected 

SEU’s 

 

[%] 

 

S0 7825 8 S1 90186 92 

S2 41783 42 S3 84994 86 

S4 27550 28 S5 12145 12 

S6 42177 42 S7 2114 2 

S8 1134 1 S9 3811 4 

S10 37268 38 S11 981 1 

S12 6534 6 S13 719 0.7 

S14 289 0.3 S15 119 0.1 

7. CONCLUSIONS 

 The result presented here shown how some blocks added to the 

Reed Solomon decoder due to high level considerations about the 

decoder functionality are not really necessary to obtain an high fault 

detection coverage. The Hamming Counter block can be excluded 

from the self-checking scheme with a very small reduction of the 

fault tolerance capabilities. Moreover, a detailed analysis of the 

syndrome vector outputs allows to reduce also the blocks computing 

the syndrome only 

to a small subset, without penalty in terms of percentage of detected 

faults. This methodology to improve the efficiency of self-checking 

structures is possible only if an extensive fault injection campaign 

can be performed in a fast and flexible 

environment. The fault injection technique used in this seminar is a 

good candidate for this task, because is able to perform injection 

campaigns in a fraction of the time simulation-based approaches 

require. 
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