
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

24

AES Algorithm Implementation using ARM Processor

T.Ravichandra Babu
Department of ECE

Sri Vasavi Engg.College

JNTUK University, Kakinada

Andhra Pradesh, India.

K.V.V.S.Murthy
Adhitya Educational Institutions.

JNTUK University,

Kakinada-East Godavari (Dist.)

Andhra Pradesh, India.

G.Sunil
Department of ECE

Sri Vasavi Engg.College.

JNTUK University, Kakinada

Andhra Pradesh, India.

ABSTRACT
The AES encryption/decryption algorithm is widely used in

modern consumer electronic products for security. To shorten

the encryption/decryption time of plenty of data, it is necessary

to adopt the algorithm of hardware implementation; however, it

is possible to meet the requirement for low cost by completely

using software only. How to reach a balance between the cost

and efficiency of software and hardware implementation is a

question worth of being discussed. In this paper, we

implemented the AES encryption algorithm with hardware in

combination with part of software using the custom instruction

mechanism provided by the ARM7 with keil platform. we

explored various combinations of hardware and software to

realize the AES algorithm and discussed possible best solutions

of different needs.

General Terms

Algorithm, Embedded Systems and Applications

Keywords

Cryptography, AES, custom instruction, ARM processor

1. INTRODUCTION
With the rapid development of the Internet and e-Commerce,

portable memory devices such as USB Disk, SD Card… are

becoming increasingly popular; how to prevent the encryption

system from being decrypted has become an important issue. As

the length of the data block of the Data Encryption Standard

(DES) algorithm is 64 bits only, and the length of the key is 56

bits only, it can no longer meet today‟s system needs.

Hence, National Institute of Standard and Technology (NIST)

launched a campaign to solicit new encryption algorithm. After

a string of evaluations, Rijmen‟s algorithm of Vincent Rijmen

became the new coding standard and has replaced the existing

symmetrical coding standard (DES)[4].

The AES algorithm is a round-based encryption/decryption

algorithm and each round includes 4 operations: AddRoundKey,

ShiftRows, SubBytes and MixColumns. To shorten the

encryption/decryption time of plenty of data, it is necessary to

adopt the algorithm of hardware implementation; however, it is

possible to meet the requirement for low cost by using software

only.

In recent years, there have been plenty of literatures on

hardware/software implementation of the AES algorithm. They

can be divided into 3 types: (1) full software implementation on

low cost devices that do not require high speed, (2) full

hardware implementation SubBytes is the computation that

requires most hardware. (3) Software/hardware co-design

.implement part of the algorithm using hardware and the

remaining algorithm using software so as to reach a balance

between the cost and efficiency. To mix its computation, the

hardware is turned into custom instruction to support the

software, which is a feasible method. How to reach a balance

between the cost and efficiency of software and hardware

implementation is a question worth of being discussed. In this

paper, we implemented the AES encryption algorithm with

hardware in combination with part of software using the custom

instruction mechanism provided by the ARM7 with Keil

platform. We explored various combinations of hardware and

software to realize AES algorithm and discussed possible best

solutions of different needs. In the next section, we will briefly

review the AES algorithm.

2. AES ALGORITHM

The Advanced Encryption Standard is a symmetric block cipher.

The data block size is fixed to be128 bits, while the key length

can be 128, 192 or 256 bits. The AES is a round-based

algorithm. The number of rounds Nr is 10, 12, or 14, when the

key length is 128, 192 or 256 bits, respectively. Each round of

AES algorithm performs the three transformations:

AddRoundKey, SubBytes, and ShiftRows. Except the final

round, each round also performs Mixcolumns. The key used in

each round, called as round-key, is generated from the initial key

by a separate key scheduling module.

The 128 bit data block is divided into 16 bytes, which are

represented by a 4X4 matrix of bytes. The entries are denotes by

S0,0, S0,1, S0,2, S0,3, S1,0,S1,1, S1,2, S1,3, S2,0, S2,1, S2,2,

S2,3,S3,0 , S3,1, S3,2, S3,3. The matrix represents a state S. All

the four transformations map an input state to an output state.

The AddRoundKey involves only one bit-wise XOR operation

between the state S and the round key. The ShiftRows cyclically

shifts k bytes to the left on kth row of the state matrix, k=0~3.

The position changes to S0,0, S0,1, S0,2, S0,3, S, S1,2, S2,2,

S2,3, S2,0, S2,1, S3,1, S3,2, S33, S3,0. The MixColumn uses each

column of the state matrix as a polynomial over GF(28)and

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

25

multiples them modulo x+1 with a polynomial a(x) ={03}x +

{01}x + {01}x + {02}.

 Figure 1.AES Encryption / Decryption flow

The SubBytes is a nonlinear transformation, which substitutes

each byte of the state with its multiplicative inverse in GF(28)

and then performs an affine transformation. The irreducible

polynomials m(x) = x8 + x4 + x3 + x + 1 is used in the AES

algorithm to construct GF(28). The affine transformation

consists of a bitwise matrix multiplication with a fixed 8x8

binary matrix followed by XOR with {63}h.. The module

performing the SubBytes transformation is called as SBOX.

3. ROUNDKEY GENERATION
There are two main approaches to generate the round key used

in the AES process. Keys can be generated on-the-fly by a

concurrently executing data path that computes the next round

key during the time the actual data path completes computing

the current AES round. The second alternative is to pre-compute

all roundkeys and store them in a roundkey memory.

A critical point in the implementation of a cryptographic system

is the "key setup time" which is defined as the amount of time

required to start cryptographic operations after a new cipherkey

has been provided. On-the-fly key generators can be designed in

a way to completely eliminate any latency overhead when

changing cipherkeys, at least for encryption. For decryption, the

first roundkey that is required is the last roundkey that has been

used for encryption. Since the key expansion uses recursion,

there is no simple way to obtain the last roundkey directly from

the cipherkey. This must be done by computing all roundkeys

for the encryption. The last roundkey so obtained can be used as

an initial vector for the inverse key schedule.

The AES-128 mode requires 10 roundkeys with 128 bits. An on-

the-fly key generator of a flexible AES implementation that

supports both encryption and decryption for all standard key

lengths needs to be able to store 256 bits of cipherkey, 128 bits

for the roundkey, and finally 128 bits for the last roundkey. This

is more than one fourth of the total amount of storage that is

needed for all roundkeys. Consequently, pre-computing all

roundkeys is not always a bad decision.

4. OPTIMISATION FOR ARM

 PROCESSOR
ARM is the leading provider of 32-bit embedded RISC mi-

croprocessors with almost 75% of the market. ARM offers a

wide range of processor cores based on a common architecture

[5] [3], delivering high performance together with low power

consumption and system cost.

ARM processors implement a load/store architecture. De-

pending on the processor mode, 15 general purpose registers are

visible at a time. Almost all ARM instructions can be executed

conditionally on the value of the ALU status flags. Load and

store instructions can load or store a 32-bit word or an 8-bit

unsigned byte from memory to a register or from a register to

memory.

The ARM arithmetic logic unit has a 32-bit barrel shifter

that is capable of shift and rotate operations. The second

operand to all ARM data-processing and single register data-

transfer instructions can be shifted before data processing or

data transfer is executed, as part of the instruction. The amount

by which the register should be shifted may be contained in an

immediate field in the instruction, or in the bottom byte of

another register. When the shift amount is specified in the

instruction, it may take any value from 0 to 31, without

incurring any penalty in the instruction cycle time.

At first sight, the key expansion defined for AES , does not look

hardware intensive. After all, only four SubBytes operations are

required per AES round. However, the additional flexibility

required to support all three key lengths results in a very

cumbersome and slow implementation. For faster

implementations with large parallel data paths, the critical path

through the key generator is usually longer than the actual data

path. For small implementations that use a data path of 32 bits or

less, more area is required to implement a key generator than the

actual data path.

5. HARDWARE & SOFTWARE

 IMPLEMENTATIONS
We will firstly describe main considerations in the hardware

implementation and then in software implementation. The

AddRoundKey operation involves only one bit-wise XOR

operation. The MixColumn operation can be also implemented

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

26

with XOR gates only [7]. The ShiftRows operation can be

realized by wring. There are two approaches for designing S-

Box circuits: (1) Table lookup and (2) Combinational circuit.

The former uses ROM or RAM to store the table. In the latter

design, the inversion in GF(28) is the most complicated

operation. To reduce the hardware complexity, the composite

field arithmetic is exploited [11], by that the original inversion

in GF(28) is mapped to operations in composite field GF((24)2 .

Basically, an element a Є GF(28) is represented as a linear

polynomial a hx+al with coefficients in GF(24). Let us take the

eight bits of a Є GF(28) as {a1, a2,…, a7} and the four bits for ah

(al) as {ah3,…, ah0} ({al3,…, al0}). Then the mapping can be

computed as follows [3]:

al = (al0 = ac⊕a0⊕a5, all = al⊕a2, a12 = aA , al3 =a2 ⊕a4 ,ah

= (ah0 = ac⊕a5, ahl = aA⊕ac, ah2 = aB⊕a2⊕a3,ah3=aB),

 where aA = a1⊕a7, aB = a5⊕a7, aC = a4.⊕a6.

The inversion of ahx+al requires modular reduction to guarantee

that the result is also a two-term polynomial. The irreducible

polynomial n(x) = x2 + {1}x + {e} is used. Let „×’ be

multiplication. The inversion can be derived as follows:

(ahx+al)
-1=(ah d)x+(ah⊕ al) d,

 where d = ((ah2 {e})⊕(ah al)⊕al2)-1

 Those operations can be reduced to the bit-wise logical AND

and XOR functions. In this work, the operation x2 mod m(x) and

x{e} are merged into the following logic implementation:

q0=a1⊕a2, q1=a0, q2=aB⊕a3, q3=aB,

where aB=a0⊕a1.

In the software part, AddRoundKey and SubBytes are based on

individual bytes and it does not matter on how the data is

arranged in the memory. However, since ShiftRows manipulate

data in one row while MixColumn in one column, it is

impossible for the two operations to read 4 bytes at one time.

Since MixColumn involves more algorithmic actions, the

original state matrix is transposed for simplifying MixColumn

operations in paper [8]. However, this requires the modification

of the key generation procedure. The approach in papers [9,10]

combined the SubBytes and MixColumn as an extended SBox

table. The extended SBox table are 32-bit, 256 word tables.

generated by concatenating four values Si,j×{03}, Si,j×{02},

Si,j×{01} and Sij×{01} of each SBox table output Si,j.

In this paper, SubBytes and Mix Columns are executed

separately.

5.1. The Mixcolumn Transformation

The MixColumn transformation makes use of arithmetic

operations

Table 1: Look-up tables used by different versions

Version Encryption Decryption

V1 Sbox InvSbox

V1T Sbox InvSbox

V2 Sbox + Enc. table InvSbox + Dec. table

in the finite field GF(2n). We assume that the reader has a basic

background of Galois Fields, but for completeness we recall that

addition in GF(2n) is equivalent to a simple bitwise XOR, while

multiplication is obtained by reducing the result of standard

multiplication (with XOR as sum) modulo a fixed polynomial.

This polynomial must be irreducible to preserve the algebraic

structure of field. In the MixColumn transformation, each

column of the State is considered as a polynomial with

coefficients in GF(28), and multiplied modulo x4 + 1 with a

fixed polynomial {03}x3 +{01}x2 + {01}x + {02}, co prime to

the modulo. Assuming that the column before transformation

consists of the bytes (b0, b1, b2, b3), each byte representing a

polynomial in GF(28), the transformed column bytes (c0, c1, c2,

c3) are computed as follows:

 C0 = {02} b0 {03} b1 {01} b2 {01} b3

 C1 = {01} b0 {02} b1 {03} b2 {01} b3

 C2= {01} b0 {01} b1 {02} b2 {03} b3

 C3 = {03} b0 {01} b1 {01} b2 {02} b3

Where denotes polynomial multiplication in GF(28) defined by

the irreducible polynomial x8+ x4+ x3+ x + 1, and denotes

simple XOR at byte level. Multiplication by {02} in GF(28) can

be implemented at byte level with a left shift followed by a

conditional bitwise XOR with {1b}. Multiplication by larger

coefficients can be implemented with repeated multiplications

by {02} and XORs with previously calculated results.

Shift Rows

Shift Register

Sub Byte

MixColumns

Register

Round Key

Text_in

(b)

X

XX

Affine Transformation (a)

X 2

X -1

(x)

-1 (x)

Figure 2.Hardware implementation of (a) SBOX and

(b)AES algorithm

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

27

6. CUSTOM INSTRUCTIONS
In this paper, we use ARM7 Processor to implement AES

algorithm using custom hardware instructions. The advantages

of custom instructions include the reduction of instruction

sequence and the speed acceleration by hardware.

With the ARM processor development kits, we can convert one

hardware circuit into a custom instruction and put it in the

instruction set of the CPU. Depending on the data amount and

execution, we can get the ARM supports four types of custom

instructions: combinatorial, multi-cycle extended and register

file. In this we are implementing AES algorithm using the

custom instructions are ARM processor and keil compiler

software with both hardware and software combinations.

7. EXPERIMENTAL RESULTS

We explored design space with a parameterized synthesizable

design. Relevant programmable parameters include:

 SW, TSBOX or GSBOX: A user can choose software

table(SW), pre-store hardware table (TSBOX), generating

transformation by combinational logic to implement SBOX

(GSBOX), which is realized by composite field arithmetic

as stated in the third section.

 Number of SBOX: If using TSBOX or GSBOX, a user can

choose how many SBOX to implement: 1, 4, 8 or 16.

 MixColumn: A user can choose whether to implement it

using hardware.

 ShiftRow+AddRoundkey: A user can choose whether to

implement it using hardware.
The custom instructions are implemented with ARM7 Processor

development kit. In the experiment, ARM7 processor hardware

in combination with software i.e. embedded C language

developed using keil software. The time is measured for

running32 packets of data, each having 128 bits. The round keys

are pre-calculated using the same implementation (either look-

up table or combinational logic) as used in the data path. After

the round keys have been prepared, the 32 packets are encrypted

sequentially.

Figure 3.AES algorithm source code

The source code which is developed in embeddedC language the

fig 3 represents example for the source code of AES encryption

and decryption algorithm.

After developing the source code ,burn the programming into

the ARM processor by using the flash burner called Philips flash

utility V2.2.3.

 Figure 4. Burning process

The fig 4 represents the example of the dumping(burning) the

program into the ARM processor.

When the burning process is completed, go to the hyper terminal

and transmit the data. The fig 5(A) & (B) represents the hyper

terminal link to transmit the data to the processor.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

28

 Figure 5(A).Hyper Terminal

Figure 5 (B).LCD display data

When the data is received then the key generation process is

calculated. The number of rounds is depending up on the size of

the data. The number of rounds Nr is 10, 12, or 14, when the key

length is 128, 192 or 256 bits, respectively.

The fig 6 represents the examples of AES key generation

method. Here the generated key length is depend on the data

block size. For example The number of rounds is 10, 12, or 14,

when the key length is 128, 192 or 256 bits, respectively

Figure 6.AES key generation

When the key generation is completed; the first method in AES

algorithm i.e. encryption method is started. Here the original

data which transmitted in the form of encrypted. The fig 7

represents the example of the encryption form.

Figure 7. Encryption process

After completion of the encrypted form then we perform the

decryption form of the encrypted data. At finally the original

message is received. The fig 8 represents the example of final

received original data. By using this process we can provide

high security for transmitting the data.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

29

Figure 8.Received original message window

Earlier this algorithm is implemented on ALTERA Nios II

platform, with a parameterized synthesizable design. But when

we are using ARM processor it can provide more security &

accuracy for data transmission

8. ACKNOWLEDGMENTS
The authors would like to thank Dr.Syed S Basha, Chairman of

The RISE, for the invaluable support during the development of

this work.

9. CONCLUSION
The AES encryption/decryption algorithm is widely used in

modern consumer electronic products for security. In this paper,

we have implemented the AES encryption and decryption

algorithm with hardware in combination with part of software

using the custom instruction mechanism provided by the ARM7

With a language of embedded C using of keil platform , we

explored various combinations of hardware and software to

realize the AES algorithm and discussed possible best

solutions of different needs.

REFERENCES

[1] ARM Architecture. Reference Manual ARM DDI 0100D,

ARM Limited, Feb 2000.

[2] Arm Ltd. website. http://www.arm.com

[3] ARM7. Data Sheet ARM DDI 0020C, ARM Limited, Dec

1994.

[4] AN 188: Custom Instructions for the Nios Embedded

Processor, Altera Corporation

[5] B. Gladman. A Speci cation for Rijndael, the AES

Algorithm. Available at http://fp.gladman.plus.com, May

2002

[6] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti and S.

Marchesin, “Efficient Software Implementation of AES on

32-bit Platforms,” CHES 2002, LNCS 2523, pp. 159–171,

2003.

[7] Intel Strong ARM SA-1110 Microprocessor. Developer's

Manual 278240-003, Intel Corporation, Jun 2000.

[8] I. Verbauwhede, et al., Design and Performance Testing of

a 2.29-GB/s Rijdael Processor, IEEE JSSC, vol. 38,no. 3,

pp569-572, 2003

[9] Intel Ltd. website.http://www.intel.com.

[10] J. Daemen and V. Rijmen. Rijndael, the Advanced

Encryption Standard. Dr. Dobb's Journal, 26(3):137{139,

Mar. 2001.

[11] K. Nadehara, M. Ikekawa and I. Kuroda, “Extended

Instructions for the AES Cryptography and their Efficient

Implementation,” Signal Processing Systems,

2004. SIPS 2004. IEEE Workshop on, pp. 152- 157, 13-15 Oct.

2004

[12] NIST, “Advanced Encryption Standard(AES),” FIPS PUBS

197, Nov. 2001

[13] Satoh, S. Morioka, K. Takano and S. Munetoh, “A

Compact Rijndael Hardware Architecture with S-Box

Optimization,” ASIACRYPT 2001, LNCS, vol. 2248, pp.

239-254, 2001

[14] S. Tillich, J. Großsch¨adl and A. Szekely, “An Instruction

Set Extension for Fast and Memory-Efficient AES

Implementation,” J. Dittmann, CMS 2005, LNCS 3677, pp.

11–21, 2005.

[15] X. Zhang and K. K. Parhi: High-Speed VLSI Architectures

forthe AES Algorithm, IEEE Transactions on VLSI

Systems, vol.12, Issue 9, pp. 957-967, Sept.2004

