
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

19

FPGA Implementation of Dynamic Energy Efficient
Memory Controller for a H.264/AVC Application

A.M. Kulkarni
SENSE, VIT University

Vellore, India

V. Arunachalam
SENSE,VIT University

Vellore, India

ABSTRACT
Improvement in high speed DSP applications can be done by

integrating computational power with effective memory

management. Bandwidth and latency of operation in memory

system is rigidly dependent on data accesses. DSP applications

such as multimedia require exhaustive streaming at high speed

buses. The energy consumption is the key element which will be

the focus of research in VLSI and Embedded systems industry.

Today a cardinal issue of DSP application is to reduce impact of

memory access on execution time while reducing energy

consumption of the system. Memory Scheduling is significant in

DSP applications to use memory bandwidth effectively. In this

paper, we introduce the dynamic memory access scheduling with

refresh priority considerations. In addition, a novel bus switching

activity monitoring mechanism is implemented to efficaciously

reduce the energy consumption of memory operations.

H.264/AVC provides higher coding efficiency through added

features and functionality, which impose additional computational

complexity in encoder and decoder. The features of memory

access patterns of H.264 encoder are analyzed. The overhead

cycle of page activation has been reduced to improve bus

efficiency which also reduces latency of operations. The scheduler

and memory controller has been experimented by running a

dynamic H.264/AVC application on Xilinx FPGA.

General Terms
Design

Keywords
Multimedia applications, Dynamic Memory schedulers, Bus

switching activity monitoring, H.264/AVC.

1. INTRODUCTION
With lots of functionality being merged, the need of high

performance in an embedded system becomes inevitable. This

range of new application also demands low energy consumption.

Memory chips pervade a greater portion of energy consumption in

embedded systems. Also, DSP processing complexity and speed

of operation have increased dramatically in the past decade in

comparison to memory control techniques. Therefore, their

performance is limited by the speed of the memory control

systems. The applications like image and multimedia processing

are characterized by a large number of data accesses. These

streaming intensive applications limit the computational speed. In

this paper, we have considered the H.264/AVC encoder which can

achieve bit-rate reduction by a factor of 2 at the cost of

computational complexity. In fact, new researchers are

concentrating on reducing computational latency by scheduling

memory accesses.

3-D architecture of DRAMs makes it sequentially accessible

rather than randomly [8]. Latency and bandwidth of memory

systems are cardinally dependent upon 3-D architecture of

memory architecture. Sequential accesses to rows have high

access latency and cannot be pipelined due to row pre-charge and

row activation operations [6].

Accesses to different banks and columns for single row have low

latency. This operation can be pipelined. However this makes

system performance dependent on the number of accesses. The 3-

D structure of DRAMs is advantageous for reordering memory

accesses.

A memory access scheduling with reordering memory references

improves performance by exploiting locality within the 3-D

memory structure [8]. Memory scheduling operation based on the

history of recently scheduled operations has been adapted in [3].

History based scheduler takes advantage of previously scheduled

instructions thereby avoiding certain bottlenecks within the

memory controller. In [4], non-uniform latencies have been

utilized effectively to increase bus utilization while decreasing

execution time of memory. Burst scheduling improves execution

time by reducing the need of row pre-charge. It accesses are

directed to same row of same bank. However [1], considers

dynamic memory accesses too which are handled in pipelined

manner.

There have been several forays into hardware and software energy

minimization techniques. From the hardware aspect, we find two

complementary energy saving trends emerging. The first is the

clustering of hardware components into smaller and less energy

consuming components. Zyuben and Kogge [10] show that such a

multi-clustered architecture can be up to twice as energy efficient

as wide-issue superscalar processors. The second trend is the

support for different operating modes (power modes/energy

modes), each consuming a different amount of energy.

This paper experiments Dynamic Memory Access Scheduler for

H.264/AVC based HDTV multimedia application. Latency of

memory accesses is further reduced by efficient address

generation policy. Video coding is typically a data dominated

process and affects the memory bandwidth. The paper [5],

quantifies the complexity cost in memory centric way. Bit-

allocation approach is used to enhance memory access speed by

simplifying the computational complexity [9]. It uses pseudo

address decoding to shrink I/O complexity, which helps to shorten

the access time. It further takes advantage of bus switching

activity monitoring mechanism to reduce energy consumption of

memory.

This paper makes following contributions:
 Analyses the memory access patterns of H.264 encoder and

designs address generator for further reduction in latency of

operations.

 Introduces Dynamic Memory Access Scheduling considering

refresh priority.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

20

 Implements Bus switching activity monitoring mechanism to

effectively reduce energy consumption of memory.

 Compares experimental results of all memory schedulers

with proposed memory scheduler.

Definition1 (Static access sequences): The static memory access

sequences are those which are known a priori before execution of

the application. Also, we can say that it does not depend on

execution practicalities.

Definition2 (Dynamic access sequences): The memory access is

called indeterminate access when a part of the data is unknown

before execution of the application. Therefore, indeterminate

accesses are a combination of static and dynamic access

sequences.

Dynamic accesses are computed while executing the application.

Section-2 presents related work background for memory

scheduling algorithms. Section-3 adduces address generator based

on H.264/AVC encoder memory access pattern analysis. The

proposed architecture of memory scheduler which can handle

dynamic memory accesses is discussed in Section-4. Experiments

& results analysis are presented in section-5. It shows the

comparable reduction in execution time with a little increase in

hardware complexity.

2. RELATED WORK

2.1 First Ready Scheduling
First Ready Scheduling is a non-preemptive scheduling. In this

scheduler tasks in the ready queue are executed in the order in

which they entered the queue. The next will commence only after

the completion of previous task.

Task can be defined in three states: (i) ready, (ii) blocked (iii)

running state. When task is moved from one state to another it is

called context switching. In this scheduling two queues are

maintained in blocked and ready state. Task with ready will be

have highest priority and will perform the task on memory. The

first ready scheduler considers the pending task; scheduler timing

and resource constraints while context switching. Advantage is

taken of the fact that when a row is being pre-charged other bank

operations can be context switched.

2.2 Out-of-order Scheduling
Memory access scheduler is responsible for ordering & duration

of task. Reordering of task is one of the important tasks of the

memory scheduler available today. During the last decade many

researchers concentrated on memory scheduling policies to reduce

latency of operation and execution time.

Due to 3-D structure of DRAM devices, we can access memory

rows sequentially with pipelined banks available. An access to

DRAM is consisting of three commands: (i) Pre-charge, (ii)

Activate row access, (iii) Activate column access. The goal of out-

of-order scheduling is to reduce latency by reordering memory

references. In [8], a better command resource utilization which

reduces DRAM cycles from 28 to 16 has been illustrated. An

example is shown in figure.1

Figure.1.Memory Accesses Scheduling

Depending upon the state of the DRAM, memory accesses could

be row hit, row conflict, and row empty & has different latencies.

A row hit occurs when the bank is open and an access is directed

to the same row. A row conflict occurs when an access goes to a

different row than the last access to the same bank. If the bank is

closed (pre-charged) then a row empty occurs.

2.3 Burst Scheduling
The actual meaning of burst length refers to the amount of data

that is written/read after issuing write/read command. But here,

burst means accesses to same row of same bank.

Figure.2 frames structure for burst scheduling. Since latency of

row hit is small, row hit rate increases which maximizes bus

utilization rate. Accesses to the same bank are stored in write

queues and read queues according to the request from the

processor to the specific bank. Newly arrived burst are joined with

these queues. After a bus is arbitrated from each bank final access

is determined from ongoing accesses stored in read and write

queues.

Figure.2 Structure of Burst scheduling

3. OPTIMIZATION FOR ADDRESS

GENERATION
The page break analysis of memory access pattern is done on the

basis of current frame storing, motion estimation and de-blocking

loop filter, to find the lowest speed of memory controller for

HDTV(1920 × 1080@30fps) encoder[2].

Total memory bandwidth required for HDTV 1080p (1920X 1080,

30fps) real time video application can be calculated as:

() () () (_) (_)BW total BW store BW Loop BW ME luma BW ME croma

() 607BW total Mbps

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

21

Considering 64-bit data bus:

() () (8 64)F memory BW total

() 75.9F memory MHz
Therefore, SDRAM controller should be processing at around

80MHz to reach the bandwidth requirement for HDTV encoder.

Unfortunately, SDRAM bandwidth cannot be used with 100%

efficiency. Hence, we need to increase the frequency by analyzing

the access strategy.

We have used the following algorithm for address generation [2]:

 Divide each row of incoming pixel data into multiples of 16

based on the number of macro blocks that can fit in a row of

SDRAM memory.

 For a memory with 512 columns and data width of 16, two

macro blocks can fit in single row of SDRAM.

 The current macro block for encoding is obtained from single

row.

 The address for current macro block can be obtained by

taking the macro block number.

 For encoding one macro block it has to access (2Ph + N-1) X

(2Pv + N -1) pixel data. Where, Ph is the horizontal search

range, Pv is the vertical search range and N is the macro

block size.

 The amount of memory access is reduced by using level C

data reuse strategy. By using this data reuse strategy only

(2Pv/N + 1) reference macro blocks will accessed from

search area.

 In the encoding sequence of IBBP the two consecutive B-

frames require the same reference data for encoding. The

order of accessing current macro blocks from two

consecutive B-frames is changed in order to reduce the

amount of search data access time.

 The current macro block of two B-frames that needs same

reference data for motion estimation are accessed alternately.

4. DYNAMIC MEMORY ACCESS
 SCHEDULER

Based on the above two architectures this paper proposes a new

dynamic memory access scheduling algorithm and elaborates the

approach. Figure.3 shows the architecture for proposed scheduler

architecture. In this read and write queues are maintained and

memory accesses depending on read/write condition sent to

particular queue. While maintaining the queue read/write memory

accesses are sorted according to arrival time. Newly arrived

accesses join queues. Bank arbiter is responsible for sending final

burst to the DRAM memory. While scheduling memory accesses

proposed scheduler places emphasis on dynamic memory

accesses.

4.1 Dynamic Memory Accesses
Dynamic memory accesses as defined in section II consist of

static and dynamic accesses. Here, we considered dynamic

accesses as Read-After-Write(R-A-W) and Write-After-Write

accesses (W-A-W). Since, RISC processor adopts plurality of

pipelines, these dynamic memory accesses sometimes turn into

data hazards [7]. A major task to scheduler is to reduce dynamic

memory access.

Dynamic memory accesses can be of three types: Consider there

are two memory accesses i and j, where i is occurring before j.

Definition3: Read-After-Write (RAW): j tries to read before i

writes so incorrectly it gets old data.

Defination4: Write-After-Write (WAW): j tries to write data before

it is written by i. The write end-up being performed in wrong

order. This leaves the value written by i instead of j in destination.

Definition5: Write-After-Read (WAR): j tries to write a destination

before it is read by i, so i incorrectly gets the new value.

In the proposed architecture we have reduced RAW and WAW

accesses, assuming that, packets are formed by data and address.

Whenever read packets arrives at read it first searches write queue

for a packet with same physical address. If found the read packet

will not enter in read queue instead it enters in write queue.

Otherwise, read packet enters in read queue to end with an access.

This task avoids RAW data hazard. WAW is avoided by queue,

since accesses to memory are done in time sequence. RAW

cannot happen in our scenario and explained in section 3.2

Fig.3 Dynamic Memory Access Scheduler

4.2 Scheduling Policy

Scheduling queue assigns a priority and final data sent to memory

are based on different priorities we have considered based on facts

observed [8], [4], [1].

Priority is based on waiting cycle of packet in queue (WT), burst

length (BL), and read/write priority (P).x and y are coefficients

respectively.

Priority = x. WT + y. BL + P

Memory scheduler also considers a fact which helps to decrease

latency. Among all pending reads/ writes scheduler will pick

read/write to rows already open. Then priority mentioned above is

considered. Now, final read/write access can be performed. If read

queue is not full read operation is performed, else write operation

is performed first. Dynamic memory access scheduler bids to

delay refresh operation as long as possible to maximize

performance while meeting refresh need. Decision of priority is

based upon following observations:

 Longer the packet is waiting in queue higher

priority it should have. Or else data dependency will be

lost.

 As defined if burst length is higher row hit accesses will

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

22

increase as well as it will reduce transition time of many

shorter bursts.

Priority of read accesses must be higher than write accesses. This

avoids the W-A-R memory accesses. W-A-R occurs due to write

packets sent early before read packets. Also, read accesses need to

fetch data and sooner they send data which require further

operation. Whereas, write accesses considered finished after

writing in queue.

4.3 Refresh Policy
Refresh command is one of the most important tasks in DRAMs.

If DRAMs are not refreshed in time it creates data corruption.

Many research papers illustrates pre-charging bank [8], row

activate and column accesses [4]. In this paper we have

considered refresh policy as well.

Memory scheduler assigns refresh command at refresh rate.

Refresh interval counter is loaded with refresh rate at each clock

cycle it is decremented. Whenever, refresh interval counter

reaches zero value backlog counter is incremented by 1.

Alternatively, whenever refresh command is assigned backlog

counter is decremented by 1. Backlog counter holds number of

refresh command. Memory scheduler assigns refresh command

depending on the urgency level. After following refresh command

memory scheduler waits for TRFC mentioned in datasheet of

memory device. Refresh urgency levels are shown in Table1.

Table. 1 Refresh Urgency Levels

URGENCY

LEVEL
DESCRIPTION

REFRESH

MAY

Backlog count is greater than 0. Indicates there

is a backlog of REFR commands, when the

memory scheduler is not busy it will issue the

REFR command.

REFRESH

RELEASE

Backlog count is greater than 3. Indicates the

level at which enough REFR commands have

been performed and the memory scheduler may

service new memory access requests.

REFRESH

NEED

Backlog count is greater than 7. Indicates the

memory scheduler should raise the priority level

of a REFR command above servicing a new

memory access.

REFRESH

MUST

Backlog count is greater than 11. Indicates the

level at which the memory scheduler should

perform REFR command before servicing new

memory access requests.

4.4 Selection of Final Burst
The last step is to select final burst to arrange its accesses to the

memory. The decision is made based on list access latency.
Now final dynamic memory access scheduler follows the

following priority scheme:
1. (HIGHEST) Refresh request resulting from refresh must

level urgency.
2. Read request without higher priority write, selected from

above scheduling priority.
3. Refresh request resulting from refresh need level of

urgency.
4. Write request, selected from above scheduling priority.
5. (LOWEST) Refresh request resulting from refresh may level

of urgency.

5. Bus Switching Activity Monitoring
To reduce memory energy use without increasing the program

execution time, we developed a SDRAM power mode

management scheme that uses a bus switching activity monitor to

initiate low power mode operations as well as page mode

selection. This scheme successfully reduces power consumption

of SDRAM modules when the memories have many inter-access

cycles. The scheme also reduces program execution time of the

system when the SDRAM chips are accessed frequently.

A power mode control scheme performs better when the bus

utilization is low. Open page policy architecture performs better

when the bus utilization and hit rate are both high. The power

mode control scheme reduces hit rate since the SDRAM banks are

inactive. The controller operates in open page mode when the bus

utilization reaches a threshold value.

We take advantage of bus switching activity monitoring to

activate power down mode. Power down mode decides to

implement hybrid page policy and enables auto refresh commands

in SDRAM memory.

If SDRAM is not accessed for a particular timing it can be

demoted to power down mode. Depending upon constant idle

cycle predictor based on statistics and calculations constant

threshold predictor (CTP) transfers SDRAM into power down

mode. The experimental result is analyzed in the paper and results

into:

 Power mode control scheme functions effectively when bus

utilization is less.

 Open page policy performs better when bus utilization is

high.

Bus switching activity monitoring transfers controller into power

down mode when idleness predictor reaches its threshold value.

6. EXPERIMENTAL AND RESULT

 ANALYSIS
To evaluate performance of dynamic access memory scheduler we

have used Xilinx ISE12 software tool and Xilinx SPARTAN-6

FPGA, on which modules are implemented. We have used

EDE1108ACBG SDRAM and H.264 HD Encoder Hard IP core to

examine the results. Timing analysis is done after floor planning

design in Plan-ahead tool by XILINX. Figure 4 shows analysis for

SDRAM memory architecture, implemented on FPGA.

6.1 Execution Time
Execution time is calculated on the basis of maximum output

required time after the clock. Reduction in execution time is

achieved by increasing memory bus bandwidth, which is greatly

contributed by Dynamic memory access scheduling and efficient

address generation policy. Dynamic memory access scheduling

achieves an average reduction of 8% and 15%compared with

Burst scheduling and First ready scheduling respectively. Figure.5

shows Execution time comparison of all memory access scheduler

with dynamic memory access scheduler.

6.2 Hardware Complexity Analysis
We have added refresh policy so that hardware complexity is

increased. This is calculated on the basis on device

utilization.Figure.6 shows Device utilization is increased by 9%.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

23

7. CONCLUSION
Memory scheduling is improved by reordering the access

sequences to the memory. Improvement in row hit rate causes

better bus utilization and helps to decrease execution time.

Refresh rate is delayed as long as possible to effectively maximize

performance. Analysis of memory access patterns of H.264/AVC

encoder greatly helped to design potent address generator.

Address generator reduces number of redundant memory cycles

for page breaks. From results it is concluded that execution time is

decreased though hardware complexity is increased. Bus

switching monitoring plays a major role in reducing energy

consumption by effective utilization of address generation policy.

Figure.4 SDRAM Memory Architecture

Figure.5. Execution Time Comparison of all Scheduling Policies

Figure.6. Hardware Complexity Comparison of all Scheduling Policies

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

24

8. REFERNCES
[1] Bertrand Le Gal, Emmanuel Casseau, and Sylvain

Huet “Dynamic Memory Access Management for

High-Performance DSP Applications Using High-

Level Synthesis” IEEE TRANSACTIONS ON VLSI

SYSTEMS, VOL. 16, Issue NO. 11,

NOVEMBER.2008, pp: 1454-1463.

[2] Hu Hongqi; Sun Jingnan; Xu Jiadong; , "High

Efficiency Synchronous DRAM Controller for H.264

HDTV Encoder", 4th IEEE Conference on Industrial

Electronics & Applications 2009, pp.2132-2136, 25-27

May 2009.

[3] Ibrahim Hur, CalvinLlin, “Adaptive History-Based

Memory Schedulers”, International Symposium on

Microarchitecture, Proceedings of the 37th annual

IEEE/ACM International Symposium on

Microarchitecture, pp 343 – 354,2004. Jun Shao and

Brian T. Davis “A Burst Scheduling Access

Reordering Mechanism”, pp: 285-294 Proceedings of

the 2007 IEEE 13th International Symposium on High

Performance Computer Architecture.

[4] K.Denolf, C.Blanch, “Initial Memory Complexity

Analysis of the AVC CODEC”, SIPS‟02, IEEE

Workshop.

[5] Memory Systems: Cache, DRAM, Disk. Bruce Jacob,

Spencer W. Ng, and David T. Wang, with

contributions by Samuel. ISBN 978-0-12-379751-3.

Morgan Kaufmann Publishers, September 2007

[6] Ronny Lee Arnold, Donald Charles Soltis, “Preventing

Write-After-Write Data Hazards By Cancelling Earlier

Write When No Interleaving Instruction Uses Value

To Be Written By The Earlier Write”, UNITED

STATES PATENT.

[7] Scott Rixner, William J. Dally, Ujval J. Kapasi,

Peter Mattson, and John D. Owens “Memory Access

Scheduling”, Appears in ISCA-27 (2000)

[8] Shih-Chang Hsia, „„Efficient Memory IP Design for

HDTV Coding Application‟‟, IEEE Trans. Circuits

Syst. Video Tech., vol13,June 2003.

[9] Yi-Nung Liu; Meng-Che Chuang; Shao-Yi Chien,

"Bandwidth and local memory reduction of video

encoders using Bit Plane Partitioning Memory

Management“, IEEE International Symposium on

Circuits and Systems,2009 (ISCAS 2009). pp.766-769,

24-27 May 2009.

[10] V. Zyuban , P. Kogge “Optimization of high-

performance superscalar Power Modes” ,IEEE

Transactions on Computers, v.50 n.11, p.1154-1173,

November 2001

http://www.elsevierdirect.com/product.jsp?isbn=9780123797513

