
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011 

Proceedings published by International Journal of Computer Applications® (IJCA) 

19 

FPGA Implementation of Dynamic Energy Efficient 
Memory Controller for a H.264/AVC Application

A.M. Kulkarni 
SENSE, VIT University 

Vellore, India 
 

 

V. Arunachalam 
SENSE,VIT University 

Vellore, India 

 

 

ABSTRACT 
Improvement in high speed DSP applications can be done by 

integrating computational power with effective memory 

management. Bandwidth and latency of operation in memory 

system is rigidly dependent on data accesses. DSP applications 

such as multimedia require exhaustive streaming at high speed 

buses. The energy consumption is the key element which will be 

the focus of research in VLSI and Embedded systems industry. 

Today a cardinal issue of DSP application is to reduce impact of 

memory access on execution time while reducing energy 

consumption of the system. Memory Scheduling is significant in 

DSP applications to use memory bandwidth effectively. In this 

paper, we introduce the dynamic memory access scheduling with 

refresh priority considerations. In addition, a novel bus switching 

activity monitoring mechanism is implemented to efficaciously 

reduce the energy consumption of memory operations. 

H.264/AVC provides higher coding efficiency through added 

features and functionality, which impose additional computational 

complexity in encoder and decoder. The features of memory 

access patterns of H.264 encoder are analyzed. The overhead 

cycle of page activation has been reduced to improve bus 

efficiency which also reduces latency of operations. The scheduler 

and memory controller has been experimented by running a 

dynamic H.264/AVC application on Xilinx FPGA.  

General Terms 
Design 
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1. INTRODUCTION 
With lots of functionality being merged, the need of high 

performance in an embedded system becomes inevitable. This 

range of new application also demands low energy consumption.  

Memory chips pervade a greater portion of energy consumption in 

embedded systems. Also, DSP processing complexity and speed 

of operation have increased dramatically in the past decade in 

comparison to memory control techniques. Therefore, their 

performance is limited by the speed of the memory control 

systems. The applications like image and multimedia processing 

are characterized by a large number of data accesses. These 

streaming intensive applications limit the computational speed. In 

this paper, we have considered the H.264/AVC encoder which can 

achieve bit-rate reduction by a factor of 2 at the cost of 

computational complexity. In fact, new researchers are 

concentrating on reducing computational latency by scheduling 

memory accesses. 

3-D architecture of DRAMs makes it sequentially accessible 

rather than randomly [8]. Latency and bandwidth of memory 

systems are cardinally dependent upon 3-D architecture of 

memory architecture. Sequential accesses to rows have high 

access latency and cannot be pipelined due to row pre-charge and 

row activation operations [6].  

Accesses to different banks and columns for single row have low 

latency. This operation can be pipelined. However this makes 

system performance dependent on the number of accesses. The 3-

D structure of DRAMs is advantageous for reordering memory 

accesses. 

A memory access scheduling with reordering memory references 

improves performance by exploiting locality within the 3-D 

memory structure [8]. Memory scheduling operation based on the 

history of recently scheduled operations has been adapted in [3]. 

History based scheduler takes advantage of previously scheduled 

instructions thereby avoiding certain bottlenecks within the 

memory controller. In [4], non-uniform latencies have been 

utilized effectively to increase bus utilization while decreasing 

execution time of memory. Burst scheduling improves execution 

time by reducing the need of row pre-charge. It accesses are 

directed to same row of same bank. However [1], considers 

dynamic memory accesses too which are handled in pipelined 

manner. 

There have been several forays into hardware and software energy 

minimization techniques. From the hardware aspect, we find two 

complementary energy saving trends emerging. The first is the 

clustering of hardware components into smaller and less energy 

consuming components. Zyuben and Kogge [10] show that such a 

multi-clustered architecture can be up to twice as energy efficient 

as wide-issue superscalar processors. The second trend is the 

support for different operating modes (power modes/energy 

modes), each consuming a different amount of energy. 

This paper experiments Dynamic Memory Access Scheduler for 

H.264/AVC based HDTV multimedia application. Latency of 

memory accesses is further reduced by efficient address 

generation policy. Video coding is typically a data dominated 

process and affects the memory bandwidth. The paper [5], 

quantifies the complexity cost in memory centric way. Bit-

allocation approach is used to enhance memory access speed by 

simplifying the computational complexity [9]. It uses pseudo 

address decoding to shrink I/O complexity, which helps to shorten 

the access time. It further takes advantage of bus switching 

activity monitoring mechanism to reduce energy consumption of 

memory. 

This paper makes following contributions: 
 Analyses the memory access patterns of H.264 encoder and 

designs address generator for further reduction in latency of 

operations.

 Introduces Dynamic Memory Access Scheduling considering 

refresh priority. 
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 Implements Bus switching activity monitoring mechanism to 

effectively reduce energy consumption of memory.

 Compares experimental results of all memory schedulers 

with proposed memory scheduler. 

Definition1 (Static access sequences): The static memory access 

sequences are those which are known a priori before execution of 

the application. Also, we can say that it does not depend on 

execution practicalities.  

Definition2 (Dynamic access sequences): The memory access is 

called indeterminate access when a part of the data is unknown 

before execution of the application. Therefore, indeterminate 

accesses are a combination of static and dynamic access 

sequences.  

Dynamic accesses are computed while executing the application. 

Section-2 presents related work background for memory 

scheduling algorithms. Section-3 adduces address generator based 

on H.264/AVC encoder memory access pattern analysis. The 

proposed architecture of memory scheduler which can handle 

dynamic memory accesses is discussed in Section-4. Experiments 

& results analysis are presented in section-5. It shows the 

comparable reduction in execution time with a little increase in 

hardware complexity. 

2. RELATED WORK  

2.1 First Ready Scheduling  
First Ready Scheduling is a non-preemptive scheduling. In this 

scheduler tasks in the ready queue are executed in the order in 

which they entered the queue. The next will commence only after 

the completion of previous task. 

Task can be defined in three states: (i) ready, (ii) blocked (iii) 

running state. When task is moved from one state to another it is 

called context switching. In this scheduling two queues are 

maintained in blocked and ready state. Task with ready will be 

have highest priority and will perform the task on memory. The 

first ready scheduler considers the pending task; scheduler timing 

and resource constraints while context switching. Advantage is 

taken of the fact that when a row is being pre-charged other bank 

operations can be context switched. 

2.2 Out-of-order Scheduling 
Memory access scheduler is responsible for ordering & duration 

of task. Reordering of task is one of the important tasks of the 

memory scheduler available today. During the last decade many 

researchers concentrated on memory scheduling policies to reduce 

latency of operation and execution time. 

Due to 3-D structure of DRAM devices, we can access memory 

rows sequentially with pipelined banks available. An access to 

DRAM is consisting of three commands: (i) Pre-charge, (ii) 

Activate row access, (iii) Activate column access. The goal of out-

of-order scheduling is to reduce latency by reordering memory 

references. In [8], a better command resource utilization which 

reduces DRAM cycles from 28 to 16 has been illustrated. An 

example is shown in figure.1 

 
Figure.1.Memory Accesses Scheduling 

 

Depending upon the state of the DRAM, memory accesses could 

be row hit, row conflict, and row empty & has different latencies. 

A row hit occurs when the bank is open and an access is directed 

to the same row. A row conflict occurs when an access goes to a 

different row than the last access to the same bank. If the bank is 

closed (pre-charged) then a row empty occurs. 

2.3 Burst Scheduling 
The actual meaning of burst length refers to the amount of data 

that is written/read after issuing write/read command. But here, 

burst means accesses to same row of same bank. 

Figure.2 frames structure for burst scheduling. Since latency of 

row hit is small, row hit rate increases which maximizes bus 

utilization rate. Accesses to the same bank are stored in write 

queues and read queues according to the request from the 

processor to the specific bank. Newly arrived burst are joined with 

these queues. After a bus is arbitrated from each bank final access 

is determined from ongoing accesses stored in read and write 

queues. 
 

 
Figure.2 Structure of Burst scheduling 

3. OPTIMIZATION FOR ADDRESS 

GENERATION  
The page break analysis of memory access pattern is done on the 

basis of current frame storing, motion estimation and de-blocking 

loop filter, to find the lowest speed of memory controller for 

HDTV(1920 × 1080@30fps) encoder[2]. 

Total memory bandwidth required for HDTV 1080p (1920X 1080, 

30fps) real time video application can be calculated as:  

( ) ( ) ( ) ( _ ) ( _ )BW total BW store BW Loop BW ME luma BW ME croma  

( ) 607BW total Mbps              
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Considering 64-bit data bus:  

( ) ( ) (8 64)F memory BW total  

( ) 75.9F memory MHz  
Therefore, SDRAM controller should be processing at around 

80MHz to reach the bandwidth requirement for HDTV encoder. 

Unfortunately, SDRAM bandwidth cannot be used with 100% 

efficiency. Hence, we need to increase the frequency by analyzing 

the access strategy. 

We have used the following algorithm for address generation [2]: 

 Divide each row of incoming pixel data into multiples of 16 

based on the number of macro blocks that can fit in a row of 

SDRAM memory.  

 For a memory with 512 columns and data width of 16, two 

macro blocks can fit in single row of SDRAM. 

 The current macro block for encoding is obtained from single 

row. 

 The address for current macro block can be obtained by 

taking the macro block number. 

 For encoding one macro block it has to access (2Ph + N-1) X 

(2Pv + N -1) pixel data. Where, Ph is the horizontal search 

range, Pv is the vertical search range and N is the macro 

block size. 

 The amount of memory access is reduced by using level C 

data reuse strategy. By using this data reuse strategy only 

(2Pv/N + 1) reference macro blocks will accessed from 

search area. 

 In the encoding sequence of IBBP the two consecutive B-

frames require the same reference data for encoding. The 

order of accessing current macro blocks from two 

consecutive B-frames is changed in order to reduce the 

amount of search data access time. 

 The current macro block of two B-frames that needs same 

reference data for motion estimation are accessed alternately. 

4. DYNAMIC MEMORY ACCESS          
        SCHEDULER 

Based on the above two architectures this paper proposes a new 

dynamic memory access scheduling algorithm and elaborates the 

approach. Figure.3 shows the architecture for proposed scheduler 

architecture. In this read and write queues are maintained and 

memory accesses  depending on read/write condition sent to 

particular queue. While maintaining the queue read/write memory 

accesses are sorted according to arrival time. Newly arrived 

accesses join queues. Bank arbiter is responsible for sending final 

burst to the DRAM memory. While scheduling memory accesses 

proposed scheduler places emphasis on dynamic memory 

accesses. 

4.1 Dynamic Memory Accesses 
Dynamic memory accesses as defined in section II consist of 

static and dynamic accesses. Here, we considered dynamic 

accesses as Read-After-Write(R-A-W) and Write-After-Write 

accesses (W-A-W). Since, RISC processor adopts plurality of 

pipelines, these dynamic memory accesses sometimes turn into 

data hazards [7]. A major task to scheduler is to reduce dynamic 

memory access. 

Dynamic memory accesses can be of three types: Consider there 

are two memory accesses i and j, where i is occurring before j. 

Definition3: Read-After-Write (RAW): j tries to read before i 

writes so incorrectly it gets old data. 

 

Defination4: Write-After-Write (WAW): j tries to write data before 

it is written by i. The write end-up being performed in wrong 

order. This leaves the value written by i instead of j in destination. 

Definition5: Write-After-Read (WAR): j tries to write a destination 

before it is read by i, so i incorrectly gets the new value. 

In the proposed architecture we have reduced RAW and WAW 

accesses, assuming that, packets are formed by data and address. 

Whenever read packets arrives at read it first searches write queue 

for  a packet with same physical address. If  found the read packet 

will not enter in read queue instead it enters in write queue. 

Otherwise, read packet enters in read queue to end with an access. 

This task avoids RAW data hazard. WAW is avoided by queue, 

since accesses to memory are done in time sequence. RAW 

cannot happen in our scenario and explained in section 3.2 

 

Fig.3 Dynamic Memory Access Scheduler 

4.2 Scheduling Policy 

Scheduling queue assigns a priority and final data sent to memory 

are based on different priorities we have considered based on facts 

observed [8], [4], [1]. 

Priority is based on waiting cycle of packet in queue (WT), burst 

length (BL), and read/write priority (P).x and y are coefficients 

respectively. 

Priority = x. WT + y. BL + P 

Memory scheduler also considers a fact which helps to decrease 

latency. Among all pending reads/ writes scheduler will pick 

read/write to rows already open. Then priority mentioned above is 

considered. Now, final read/write access can be performed. If read 

queue is not full read operation is performed, else write operation 

is performed first. Dynamic memory access scheduler bids to 

delay refresh operation as long as possible to maximize 

performance while meeting refresh need. Decision of priority is 

based upon following observations: 

 Longer   the   packet   is   waiting   in   queue   higher 

priority it should have.  Or else data dependency will be 

lost. 

 As defined if burst length is higher row hit accesses will 
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increase as well as it will reduce transition time of many 

shorter bursts. 
 

Priority of read accesses must be higher than write accesses. This 

avoids the W-A-R memory accesses. W-A-R occurs due to write 

packets sent early before read packets. Also, read accesses need to 

fetch data and sooner they send data which require further 

operation. Whereas, write accesses considered finished after 

writing in queue. 

4.3 Refresh Policy 
Refresh command is one of the most important tasks in DRAMs. 

If DRAMs are not refreshed in time it creates data corruption. 

Many research papers illustrates pre-charging bank [8], row 

activate and column accesses [4]. In this paper we have 

considered refresh policy as well.  

Memory scheduler assigns refresh command at refresh rate. 

Refresh interval counter is loaded with refresh rate at each clock 

cycle it is decremented. Whenever, refresh interval counter 

reaches zero value backlog counter is incremented by 1. 

Alternatively, whenever refresh command is assigned backlog 

counter is decremented by 1. Backlog counter holds number of 

refresh command. Memory scheduler assigns refresh command 

depending on the urgency level. After following refresh command 

memory scheduler waits for TRFC mentioned in datasheet of 

memory device. Refresh urgency levels are shown in Table1. 

 

Table. 1 Refresh Urgency Levels 

URGENCY 

LEVEL 
DESCRIPTION 

REFRESH 

MAY 

Backlog count is greater than 0. Indicates there   

is   a   backlog   of   REFR   commands, when the 

memory scheduler is not busy it will issue the 

REFR command. 

REFRESH 

RELEASE 

Backlog count is greater than 3. Indicates the 

level at which enough REFR commands have 

been performed and the memory scheduler may 

service new memory access requests. 

REFRESH 

NEED 

Backlog count is greater than 7. Indicates the 

memory scheduler should raise the priority level 

of a REFR command above servicing a new 

memory access. 

REFRESH 

MUST 

Backlog count is greater than 11. Indicates the 

level at which the memory scheduler should 

perform REFR command before servicing  new 

memory access requests. 
 

4.4 Selection of Final Burst 
The last step is to select final burst to arrange its accesses to the 

memory. The decision is made based on list access latency.  
Now final dynamic memory access scheduler follows the 

following priority scheme: 
1. (HIGHEST) Refresh request resulting from refresh must 

level urgency. 
2. Read request without higher priority write, selected from 

above scheduling priority. 
3. Refresh request resulting from refresh need level of 

urgency.  
4. Write request, selected from above scheduling priority. 
5. (LOWEST) Refresh request resulting from refresh may level 

of urgency.  

5. Bus Switching Activity Monitoring 
To reduce memory energy use without increasing the program 

execution time, we developed a SDRAM power mode 

management scheme that uses a bus switching activity monitor to 

initiate low power mode operations as well as page mode 

selection. This scheme successfully reduces power consumption 

of SDRAM modules when the memories have many inter-access 

cycles. The scheme also reduces program execution time of the 

system when the SDRAM chips are accessed frequently.  

A power mode control scheme performs better when the bus 

utilization is low. Open page policy architecture performs better 

when the bus utilization and hit rate are both high. The power 

mode control scheme reduces hit rate since the SDRAM banks are 

inactive. The controller operates in open page mode when the bus 

utilization reaches a threshold value. 

We take advantage of bus switching activity monitoring to 

activate power down mode. Power down mode decides to 

implement hybrid page policy and enables auto refresh commands 

in SDRAM memory.  

If SDRAM is not accessed for a particular timing it can be 

demoted to power down mode. Depending upon constant idle 

cycle predictor based on statistics and calculations constant 

threshold predictor (CTP) transfers SDRAM into power down 

mode. The experimental result is analyzed in the paper and results 

into: 

 Power mode control scheme functions effectively when bus 

utilization is less. 

 Open page policy performs better when bus utilization is 

high.  

Bus switching activity monitoring transfers controller into power 

down mode when idleness predictor reaches its threshold value.   

 

6. EXPERIMENTAL AND RESULT    

   ANALYSIS  
To evaluate performance of dynamic access memory scheduler we 

have used Xilinx ISE12 software tool and Xilinx SPARTAN-6 

FPGA, on which modules are implemented. We have used 

EDE1108ACBG SDRAM and H.264 HD Encoder Hard IP core to 

examine the results. Timing analysis is done after floor planning 

design in Plan-ahead tool by XILINX. Figure 4 shows analysis for 

SDRAM memory architecture, implemented on FPGA. 

6.1 Execution Time 
Execution time is calculated on the basis of maximum output 

required time after the clock. Reduction in execution time is 

achieved by increasing memory bus bandwidth, which is greatly 

contributed by Dynamic memory access scheduling and efficient 

address generation policy. Dynamic memory access scheduling 

achieves an average reduction of 8% and 15%compared with 

Burst scheduling and First ready scheduling respectively. Figure.5 

shows Execution time comparison of all memory access scheduler 

with dynamic memory access scheduler. 

6.2 Hardware Complexity Analysis 
We have added refresh policy so that hardware complexity is 

increased. This is calculated on the basis on device 

utilization.Figure.6 shows Device utilization is increased by 9%. 
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7. CONCLUSION 
Memory scheduling is improved by reordering the access 

sequences to the memory. Improvement in row hit rate causes 

better bus utilization and helps to decrease execution time. 

Refresh rate is delayed as long as possible to effectively maximize 

performance. Analysis of memory access patterns of H.264/AVC 

encoder greatly helped to design potent address generator. 

Address generator reduces number of redundant memory cycles 

for page breaks. From results it is concluded that execution time is 

decreased though hardware complexity is increased. Bus 

switching monitoring plays a major role in reducing energy 

consumption by effective utilization of address generation policy. 

 

 
Figure.4 SDRAM Memory Architecture 

 

Figure.5. Execution Time Comparison of all Scheduling Policies 

 

Figure.6. Hardware Complexity Comparison of all Scheduling Policies 
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