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ABSTRACT 
In this paper, sensor drift compensation of vector control of 

induction motor using neural network is presented. An induction 

motor is controlled based on vector control. The sensors sense the 

primary feedback signals for the feedback control system which is 

processed by the controller. Any fault in the sensors cause 

incorrect measurements of feedback signals due to malfunction in 

sensor circuit elements which affects the system performance. 

Hence, sensor fault compensation or drift compensation is 

important for an electric drive. Analysis of sensor drift 

compensation in motor drives is done using neural networks.  The 

feedback signals from the phase current sensors are given as the 

neural network input. The neural network then performs the auto-

associative mapping of these signals so that its output is an 

estimate of the sensed signals. Since the Auto-associative neural 

network exploits the physical and analytical redundancy, 

whenever a sensor starts to drift, the drift is compensated at the 

output, and the performance of the drive system is barely affected. 
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1. INTRODUCTION 
A drive system basically consists of an electric machine, a 

converter, primary sensor for feedback signal, feedback signal 

estimator and system controller. The sensors are extremely 

important in a drive system or any other feedback control system 

because primarily all control algorithms are based on 

measurements. The sensor faults cause incorrect measurement of 

feedback signals due to malfunction in the transducers and sensor 

circuit elements and upsets the system performance [2]. This 

paper proposes the use of Auto Associative neural network to 

compensate the drift problem in feedback current sensors in a 

vector controlled induction motor drive. 

 

Scalar control involves controlling only the magnitude of the 

control variables with no concern for the coupling effects     

between these variables. Conversely, vector or field orientated 

control involves adjusting the magnitude and phase alignment of 

the vector quantities of the motor. Scalar control, such as the 

Constant Volts/Hertz method when applied to an AC induction 

motor is relatively simple to implement but gives a sluggish 

response because of the inherent coupling effect due to torque and 

flux being functions of current and frequency. Vector control de-

couples the vectors of field current and armature flux so that they 

may be controlled independently to provide fast transient response 

[1]. Accurate position control is not possible with scalar control 

since this requires instantaneous control of the torque. This 

requires either, instantaneous change to the stator  currents, which 

is not possible due to energy storage effects, or instantaneous 

change to the rotor current which in the case of scalar control is 

controlled indirectly via the stator currents. Similarly, whilst 

scalar control may provide acceptable steady state speed control, 

precise and responsive speed control due to load changes requires 

accurate and responsive torque control. The vector approach 

overcomes the sluggish transient response when using scalar 

control of AC motors [7]. 

 

2. VECTOR CONTROL  

Vector control of an Induction motor is also called Field 

orientation control. In a typical AC induction motor, three 

alternating currents electrically displaced by 120◦ are applied to 

three stationary stator coils of the motor. The resulting flux from 

the stator induces alternating currents in the „squirrel cage‟ 

conductors of the rotor to create its own field these fields interact 

to create torque. Unlike a DC machine the rotor currents in an AC 

induction motor can not be controlled directly from an external 

source, but are derived from the interaction between the stator 

field and the resultant currents induced in the rotor conductors 

[13].  Vector control of an AC induction motor is analogous to the 

control of a separately excited DC motor [7]. In a DC motor the 

field flux ψf produced by the field current If is perpendicular to the 

armature flux ψa produced by the armature current Ia . These fields 

are decoupled and stationary with respect to each other. Therefore 

when the armature current is controlled to control torque the field 

flux remains unaffected enabling a fast transient response (see 

Figure 1). 

In a vector-controlled drive, the machine stator current vector Is 

has two components: ids or flux component and iqs or torque 

component, as shown in the phasor diagram. These current 

components are to be controlled independently, as in a dc 

machine, to control the flux and torque, respectively. The ids is 

oriented in the direction of ψr, and iqs is oriented orthogonally to 

it. The controller should make the two inverse transformations, 
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Figure 1 Vector control of Induction motor 

where the unit vector cosθe and sinθe in the controller should 

ensure correct alignment of ids in the direction of ψr and iqs at 90◦ 

ahead of it. Obviously, the unit vector is the key element for 

vector control [8].There is two methods of vector control 

depending on the derivation of the unit vector. These are the 

direct (or feedback) method and indirect (or feed forward) 

method. For closed-loop flux control in constant-torque and field 

weakening regions, ids can be controlled within the programmed 

flux control loop so that the inverter always operates in PWM 

mode[1] . 

2.1 Stator flux oriented Vector control 

The phasor diagram below (Figure 2) explains stator oriented 

vector control, where ids is oriented in the direction of Vs and iqs is 

perpendicular to it. One advantage of stator orientation is that the 

estimation of the flux and the corresponding unit vector is more 

accurate because only stator resistance variation affects the 

accuracy.  

 

 

Figure 2 Phasor diagram of stator flux vector control 

3. DRIVE SYSTEM 

It has been established that iq and id of the rotating reference frame 

must be controlled to provide good dynamic control of the 

induction motor. Using closed loop control ordered quantities of 

iq and id are compared with the actual values measured from the 

motor. In order to obtain the motor values we have to perform 

transformations on the measured 3 phase stator currents into the 

direct and quadrature components of the rotating reference frame. 

The resulting error terms are then transformed back to 3 phase 

quantities and applied to the motor. 

The power circuit (Figure 3) consists of a DC source (battery or 

rectifier DC), PWM IGBT inverter and cage type induction motor. 

The signal processing blocks include machine phase current 

sensors, signals computation and controller, and the PWM 

algorithm [3]. The command torque (Te*) and stator flux (ψs*) 

generate the active (iqs*) and reactive (ids*) current commands 

within the block which are then translated to generate input for 

PWM controller.  

The machine terminal voltages and currents are sensed and 

converted into stationery frame ds – qs signals.   These signals are 

then converted to rotating frame. The synchronous control loops 

then generate Vqs* and Vds* signals. Vqs* and Vds* signals are then 

translated using inverse Clarke transformation and fed as input to 

PWM controller. The PWM controller receives signals at the 

input and translates to gate drive signals for the IGBT inverter [8]. 

4. AUTOASSOCIATIVE NEURAL 

NETWORKS 

Artificial neural network is a system of interconnecting neurons in 

a network working together to produce an output function. 
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Figure 3 Block diagram of Vector control of Induction motor 

The output of neural network relies on the cooperation of the 

individual neurons within the network to operate. A unique 

property of neural network is that it can still perform its overall 

function even if some of the neurons are not functioning. 

Associative memory neural nets are single layer nets in which the 

weights are determined in such a way that the net can store a set 

of pattern associations. In an input  - output vector pair „s:t‟ ,if 

each vector „t‟ is same as vector  „s‟  with which it is associated , 

then the net is called  auto associative net.  An auto- associative 

neural network (AANN) is a class of artificial neural network 

(ANN) in which the outputs are trained to emulate the same as the 

inputs over an appropriate dynamic range. The AANN concept 

can capture the relationship between input and output signals that 

have some degree of relation with each other [6]. 

 Many plant variables that have some degree of coherence with 

each other constitute the inputs. For an auto associative net the 

training input and target output vectors are identical. During 

training, in order to make each output equal to the corresponding 

input, the interrelationship between the variables is embedded in 

the connection weights. A stored vector can be retrieved from 

distorted or partial input if the input is sufficiently similar to it. 

Auto-associative neural network is basically a feed forward, fully-

connected, multilayer perceptron (MLP) type neural network. The 

AANN architecture (Figure 4) contains an input layer, a number 

of hidden layers and an output layer [10]. Three hidden layers are 

theoretically enough for an AANN. 

No. of  neurons in input layer  =  3 

No. of neurons in mapping layer  =  8 

No. of neurons in bottleneck layer  =  2 

No. of neurons in  de-mapping layer  =  8 

No. of neurons in output layer  =  3 

 

 

Figure 4 Architecture of AANN 

However, additional hidden layers may improve the performance 

of the model and help to more effectively map the 

interrelationship among variables. The first hidden layer is called 

the Mapping layer. The transfer function of the nodes in the 

Mapping layer can be sigmoid or other similar nonlinear 

functions. The second hidden layer is called the Bottleneck layer 

which is responsible for the auto-association of signals. The 

dimensionality of the Bottleneck layer is the smallest one in the 

network and its transfer function can be linear or nonlinear. 

However, the transfer function of both input and output layers is 

linear. The third or last hidden layer is called the De-Mapping 

layer whose nodal transfer functions are nonlinear as indicated. 

The Mapping and De-Mapping layers have more neurons than the 

input and output layers.  

The whole network can be considered as cascaded connection of 

two three-layer sub-nets, where the signals are compressed in the 

Bottleneck layer. The AANN can be trained with example data 

using the standard back propagation method. The network is 

characterized by one-to-one mapping between the input and the 

output signals. During training, the Bottleneck layer forces the 

AANN to encode or compress the input signals and then decode 

or decompress them to restore the network outputs. As a result, 

any specific output shows virtually no change when the 

corresponding input pattern has been distorted by noise, missing 

data, or nonlinearity [11]. This characteristic allows the AANN to 

detect drift or failure by comparing the sensor output with the 

corresponding network estimate. 

5. SIMULATION STUDY 

To implement an auto associative neural network for sensor drift 

compensation multiplicative and additive errors were implicated 

in the stator part of the induction motor. Stator currents were 

observed for different values of errors to obtain the training data 

(Table 1) for neural network.   

Table 1 Sample training data for neural network 
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S.No. 

 

Error 

factor 

Input Output 

Ia Ib Ic ia ib ic 

1) 0.05 0.9 20 20 20 20 20 

2) 0.1 1.9 20 20 20 20 20 

3) 0.15 2.9 20 20 20 20 20 

4) 0.1 1.5 15 15 17 17 17 

5) 0.5 8 15 15 17 17 17 

6) 0.7 4.5 15 15 17 17 17 

7) 0.4 18 7 19 18 18 18 

8) 0.6 19 19 10 18 18 18 

9) 0.5 9.2 19 18 19 19 19 

10) 0.1 2.1 21 20 21 21 21 

11) 0.2 21 4 21 21 21 21 

12) 0.5 11 22 21 22 22 22 

13) 0.7 22 16 22 22 22 22 

14) 0.9 22 21 20 22 22 22 

15) 0.1 3 23 21 23 23 23 

16) 0.5 23 12 23 23 23 23 

17) 0.6 23 21 14 23 23 23 

18) 1.5 16 19 19 20 20 20 

19) -1.5 16 19 19 20 20 20 

20) 2 17 19 19 20 20 20 

 

The corresponding stator currents are shown in Figure 5 and 6. By 

introducing different errors in Matlab Simulink, 335 sets of 

training data were obtained. Using this data the auto-associative 

neural network with back propagation algorithm was trained with 

5 layers. 

Figure 5 shows the original stator current values obtained with 

Vector control of Induction motor. Figure 6 indicates the 

reduction in stator current due to fault in phase A 

 

Figure 5 Stator currents (ia,ib,ic) 

 

Figure 6 Reduced Stator currents with implicated error 

.6. RESULTS 

Vector control of Induction motor was simulated using Matlab 

Simulink and three stator currents ia,ib,ic were noted. 

Multiplicative and additive errors were implicated in the stator 

currents to obtain the training data for neural network. The Auto 

associative neural network adopting backpropagation algorithm 

was trained and tested. With every successive iteration the 

cumulative root mean square error in the network (target – 

output), was found to reduce. Figure 7 gives the error versus 

iteration graph. As the number of iterations continues to increase 

the cumulative mean square error for 335 sets of data was found 

to reduce. The lowest root mean square error obtained was 11.93 

for a complete 335 set of data. The number of neurons in each of 

the layers was determined using trial and error method with 
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approximately 50,000 iterations. The satisfactory output was 

obtained for the layer with neurons 3 – 8 – 2 – 8 – 3. (Input – 

Mapping – Bottleneck – Demapping – Output). Auto-associative 

neural network with back propagation algorithm  

 

Figure 7 Cumulative error Vs iteration of tested Neural 

Network 

was trained with 335 data sets and a weight matrix yielding 

satisfactory output was obtained. AANN was tested and the output 

shown in Table 2 was obtained. It can be observed that the drift in 

stator current due to various faults in all the three phases is 

compensated by the neural network validating that trained neural 

network restores back the closest possible original value of stator 

current achieving the sensor drift compensation of the Induction 

motor.. 

Table 2 Stator current output with and without Neural 

Network compensation 

S.No. Actual 

Stator 

current 

Stator current 

with error 

without 

compensation 

Stator 

current with 

NN 

compensation 

1) 17 1.5 16.8963 

2) 17 13 17.1034 

3) 18 1.7 17.9420 

4) 18 10 17.6813 

5) 19 11 19.5653 

6) 19 7 19.0772 

7) 20 15 20.1489 

8) 20 6.5 19.8912 

9) 21 6 20.8756 

10) 21 3 21.7502 

11) 22 2.1 22.5011 

12) 22 12 21.9784 

13) 23 14 22.4884 

14) 23 20 22.0867 

15) 23 16 22.3678 

 
Table 2 indicates that the trained neural network eliminates the 

error ands restores the nearest possible original value of stator 

current. 

7. CONCLUSION 
Vector controlled Induction motor drive system has been tested 

with uncompensated and compensated sensor outputs to validate 

the performance using Auto associative neural network adopting 

supervised learning algorithm. The neural network has been 

trained with 335 sets of input data (1005) and tested to obtain a 

satisfactory output. The cumulative root mean square error 

between the faulty stator current and the neural network 

compensated stator current was found to be 11.93. This concludes 

that the trained neural network compensates for the drift in 

various stator current occurring due to various faults and restores 

back the closest possible original value of stator current. Further 

this can be extended by reducing the cumulative root mean square 

error by choosing a different algorithm or fixed weight network. 

By implementing the above said networks, performance of neural 

network for sensor drift compensation can be further improved. 
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