
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

19

Application of AOP Methodology in Eclipse-AJDT

Environment for Developing Bioinformatics Software

Amita Sharma

B-16, “Tulsi Shree”

Kanta Khaturia Colony

Bikaner – 334003, India

S.S. Sarangdevot

Director, Deptt. Of Computer Science & I.T.

J.R.N. Rajasthan Vidyapeeth (Deemed)
University, Udaipur – 313001, India

ABSTRACT

The application of Aspect-Oriented Programming (AOP)

methodology has been investigated in the development of

Bioinformatics software – Bioseqsearch. This software aims to

reveal the biological significance of an unknown sequence using

similarity search through biological databases using NCBI

BLAST via internet. The complexity of the design has been

significantly reduced by achieving better separation of concerns

through modularization of identified crosscutting concerns, thus

eliminating the problems of code scattering and tangling. The

impact of using this methodology on various quality factors of the

software has been examined. The study concludes that AOP

methodology in Eclipse-AJDT environment is highly useful in

design and implementation of efficient, cost-effective and quality

bioinformatics software projects.

General Terms

Design, Experimentation, Languages, Theory, Verification.

Keywords

Aspect-Oriented Programming, Separation of Concerns,

Bioinformatics Software, Eclipse-AJDT.

1. INTRODUCTION
Aspect-Oriented Programming (AOP) [1] [2] is an emerging

programming paradigm that complements Object-Oriented

Programming (OOP) [3] and enables the modular implementation

of crosscutting concerns [4]. Invented by Kiczales [1], it aims at

providing better means of addressing the well-known problem of

separation of concerns [5] for reducing software complexity. AOP

defines a new program construct – „aspect‟ [6][7], which is a

software entity that implements crosscutting functionality in a

modular way. This provides most promising solution for

elimination of code scattering [8] and tangling [9], thus

overcoming the limitations of OOP.

In AOP the system is divided into two halves: the base (core)

program and the aspect program. The base program contains the

main functionality (core concerns) of the system and is

implemented using OOP methodology. On the other hand, the

aspect program consists of the crosscutting functionality

(crosscutting concerns) and is implemented using AOP

methodology. This facilitates better separation of those concerns

that OOP handles poorly. Aspects are woven into the core

program using an aspect weaver [8][9], thus the final software

system is realized.

Kiczales and his team at Xerox PARC developed the first and

most successful AOP language: AspectJ [10][11]. AspectJ is a

general purpose AOP extension to Java. It adds to Java a few new

constructs: poincuts, advice, intertype declarations and aspects.

AspectJ‟s aspects work side by side with Java classes to develop a

comprehensive application. Eclipse-AJDT [12]-[16] provides the

most popular and commercially successful open source enhanced

IDE support for AspectJ implementations, with a rich set of

features like Aspect Visualizer, Outline View, Editor Support and

Debugger.

Application of AOP design methodology using Eclipse-AJDT

environment has previously been investigated in modular design

of application software in the domain of banking [17] and

insurance [18]. However, this methodology has not so far been

investigated in the domain of bioinformatics.

Bioinformatics is a new scientific discipline at the crossroads of

biology, medicine and information technology [19]. It involves

collecting, manipulating, analyzing, and transmitting huge

quantities of biological data and uses computers whenever

appropriate [20]. The information archive in each organism is the

genetic material DNA (deoxyribonucleic acid) [21]. DNA

molecules are long linear chain molecules containing a message in

a four – letter alphabet: A, C, G and T [22] and as such they are

regarded as the brain of living cell [23]. A protein is a linear

sequence of simpler molecules called amino acids. They are the

molecules that accomplish most of the functions of a living cell

[24], determining its shape and structure. Like the DNA, proteins

are conveniently represented as strings of letters expressing the

sequence of amino acids [25]. DNA and protein sequences are the

main kinds of information stored in biological databases

maintained at NCBI (National Center for Biotechnology

Information), EMBL (European Molecular Biology Laboratory)

and DDBJ (DNA Data Bank of Japan). The most powerful

method of investigation of vast amount of biological data is

comparison of bio-molecular sequences, because high sequence

similarity usually implies significant functional and structural

similarity.

In the present study, the application of AOP methodology has

been investigated in the development of Bioinformatics Software

– Bioseqsearch, using Eclipse-AJDT environment. Bioseqsearch

aims to reveal the existence of similarity between an input

sequence (query sequence) and other sequences (target sequences)

stored in a biological database using NCBI BLAST server.

Similarity search through biological databases using heuristic

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

20

algorithm of BLAST for local alignment, makes the task of

deciphering the structure and biological function of a piece of

DNA much easier. In this real-life working application, the

complexity of the design has been significantly reduced by

achieving better separation of concerns through modularization of

identified crosscutting concerns, thus eliminating the problems of

code scattering and tangling. Full benefits of AOP are realized

using different visual and navigational features of Eclipse-AJDT

environment. The impact of using this methodology on various

quality factors of the software has been examined.

The rest of the paper is organized as follows: Section 2 describes

the background of sequence databases and the requirements of the

software for sequence similarity search. The problems associated

with the traditional OOP design are stated and the solution

followed in the present design is outlined. Section 3 presents an

overview of our exemplary bioinformatics software -

Bioseqsearch and Section 4 focuses on the identification of

crosscutting concerns. Section 5 explains the identification of

aspects. AOP design and implementation are presented in Section

6 and Section 7 discusses the observations regarding the impact of

using AOP methodology in Eclipse-AJDT environment on

various quality factors of the designed software. Section 8

provides the concluding remarks and Section 9 outlines the future

work.

2. BACKGROUND
In the early 1960s, Dayhoff et al. [26] at the Protein Information

Resource (PIR) collected all the protein sequences known at that

time and published them as the Atlas of Protein Sequence and

Structure. Later, text-based descriptions and information

(annotations) regarding evolution of protein families were added

to it. Soon this printed database became unwieldy and its

electronic format became necessary. European Molecular Biology

Laboratory (EMBL) initiated DNA sequence database in 1982. A

few years later, GenBank and DDBJ joined the field.

Collaboration among the three databanks started in 1988 and now,

new or updated data are shared among them, once every 24 hours,

in a flat file format [27]. Many other databases- primary,

composite and secondary have also been developed and

maintained.

These highly annotated databases are of great help to researchers.

Very often, a researcher comes across a novel DNA or protein for

which no functional data is available. He urgently needs some

basic information about the sequence, before performing some

meaningful experiment to decipher its biological function.

Sequence similarity search through these databases comes to his

rescue.

Basic Local Alignment Search Tool or BLAST [28][29] is the

most widely used technique for detecting similarity between

sequences of interest. It has become popular largely because it is

very efficient and its algorithm is straightforward. It is able to

detect similarities accurately between nucleotide or protein

sequences quickly without sacrificing sensitivity.

Before submitting the query sequence to NCBI BLAST server, the

sequence is to be converted to FASTA format. This requires a

GUI, which should provide a window for entering the sequence in

the text format. The software should automatically recognize the

type of sequence (nucleotide or protein) and should convert it to

FASTA format when the user clicks the format button. It should

also allow the user to select suitable parameters for BLAST

search. As the user clicks the submit button, the software should

submit the sequence with user selected parameters to NCBI

BLAST server via internet for similarity search. Once the search

is complete, the software should receive, save and display the

BLAST output, as desired by the user.

When such application software is designed using software

engineering approaches and OOP methodology, the presence of

crosscutting concerns impairs the modularity and quality of the

software. The software becomes more and more complex due to

code duplication (code scattering) and other problems (code

tangling).

These problems have been solved in the present design of the

bioinformatics software using AOP methodology, to complement

OOP methodology. After identification of core concerns and

crosscutting concerns of the system, core concerns have been

implemented as classes using OOP methodology and crosscutting

concerns have been implemented as aspects using AOP

methodology. Classes and aspects are combined using weaving

technique of AspectJ to deliver the final software system. Eclipse-

AJDT provides the most advanced IDE for the software design

and implementation.

3. BIOINFORMATICS SOFTWARE:

 Bioseqsearch
Bioseqsearch is application software which is designed to search

the input query sequence using NCBI BLAST server. It takes user

input (the sequence of nucleotide or amino acid), and visualizes

the results of the database search (the BLAST output).

BLAST or the Basic Local Alignment Search Tool is a database

search tool, developed and maintained by the NCBI – National

Center for Biotechnology Information. The BLAST suit of

programs has been designed to find high scoring local alignments

between sequences, without compromising the speed of such

searches. BLAST uses a heuristic algorithm which seeks local

alignments and is able to detect relationship among sequences

which share only isolated regions of similarity.

Bioseqsearch interface has a text area in which user provides input

information to the application. The input information is a

nucleotide or protein sequence. As the user clicks the “Format

sequence” button present on the interface, the input information is

read by the application.

The application automatically recognizes the sequence type

(DNA, RNA, protein etc.), loads it in the Fasta format (as required

by NCBI BLAST server) and presents the appropriate BLAST

options. The invalid options are disabled. User selects the

necessary BLAST parameters: the type of BLAST program, the

database for searches, the E-value and then clicks the submit

button present in the interface. The application thereafter sends

the query sequence to the NCBI BLAST server with selected

BLAST parameters for the search operation. After the completion

of the search, the software receives, saves and displays the

BLAST output as desired by the user.

Highly annotated records of BLAST output sequences provide

useful information for ascertaining the structure and function of

the input nucleotide/protein sequence.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

21

4. IDENTIFICATION OF CROSSCUTTING

CONCERNS
Separation of concerns and modularity are at the heart of the

programming process. Being able to keep concerns separate is

extremely important in software development. It helps in breaking

down a complex problem into smaller parts, and solves them

individually. When it comes to large systems, it is the only way to

build them. Following this approach, the system is structured into

units of function and behavior which can be put together to

produce a complete software system.

First step in designing the bioinformatics software system is to

develop a Use – Case diagram. A use-case is a typical interaction

between a user and the system under development. Figure 1

shows the use-case diagram of the bioinformatics system. This

diagram explains the requirements from the user‟s perspective.

From the study and analysis of the system, it is noticed that some

functionalities cannot be localized into single modular units using

OOP methodology. They represent functional crosscutting

concerns: Nullreport, Validseq, Updatestatus and Notifyobserver.

Apart from these, there are two more infrastructure concerns in

the system, which are crosscutting: Logging and Tracing. Thus

there are six crosscutting concerns in the bioinformatics system

and they cannot be modularized using OOP methodology.

A successful solution to this problem involves two things: an

engineering technique to separate such concerns from

requirements all the way to code and a composition mechanism to

merge design and implementation for each concern to result in the

desired system. AOP methodology provides such a solution.

5. IDENTIFICATION OF ASPECTS
While examining the requirements of the system it was observed

that some concerns are scattered over multiple classes and

crosscut. If these concerns are not captured, they may cause code

scattering and tangling. OOP is unable to capture them. In section

4, we have investigated and identified six such crosscutting

concerns in this software system, which can be best represented as

aspects for better separation of concerns using AOP methodology.

5.1 Nullreport Aspect
Whenever the application reads the sequence area, it checks

whether the sequence text is null or not. Repeating this checking

process at various locations of the program, where sequence text

is read, will cause code scattering. This problem can be solved

using AOP if we create Nullreport Aspect for this work. This

aspect has a pointcut input_seq() and a join point String

*.getText(). Using this aspect, if the input sequence read by the

getText() method is null; the user is informed about it.

5.2 Validseq Aspect
While reading the user input sequence, it is necessary to check its

validity. Placing checks for validity at various locations in the

program will create code scattering and tangling. This problem

can be avoided if Validseq Aspect is added. This aspect has two

pointcuts: seqvalidity1() associated with join point String

*.getText() and seqvalidity2() associated with join point

updateSequenceArea(String, String, Boolean) method of

SeqForm2 class. Using this aspect, whenever the sequence area is

read or updated by the application, validity of the sequence is

Figure 1. Use-Case Diagram of Bioseqsearch Software

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

22

checked. If the sequence is invalid, user is informed about it and

the sequence area is cleared.

5.3 Updatestatus Aspect
There are various locations in this application where status is

updated. Repeating calls for method statusaction() for status

updating, will increase complexity of the program. Creating

Updatestatus Aspect is a better choice which will be invoked as

soon as the join point is executed. This aspect has four pointcuts.

Updatestatus Aspect will invoke statusaction() method of

SeqForm2 class and will update the status of the application.

5.4 NotifyObserver Aspect
In JQBlast class, at various locations, setChanged() method is

executed and thereafter notifyObserver() method is called. To

reduce code scattering we create Notifyobserver Aspect which is

associated with join point java.util.Observable.setChanged()

method and pointcut reportuser(JQBlast). This aspect will notify

the user about the processing of application without code

scattering.

5.5 Logging Aspect
Whenever the application submits the query sequence to NCBI

BLAST server, the log file is maintained. The file helps in

recording the result of query sequence with its BLAST

parameters. For achieving this, without code scattering and

tangling, Logging Aspect with pointcut Queryseq(JQBlast c,

HashMap p) and join point JQBlast.submitQuery(HashMap) is

added to the application. This aspect helps in graceful evolution of

the application software.

5.6 Tracing Aspect
Every time the user clicks the button placed on the interface, the

trace of action performed is made. Similarly, whenever the query

result is received by the application, the trace of the join point is

made. This helps in understanding the internal working of the

application. For this purpose Tracing Aspect is added to the

application.

6. AOP DESIGN AND IMPLEMENTATION
The bioinformatics software – Bioseqsearch has been developed

using AOP methodology, to satisfy the requirements of the

system. It is user friendly and menu driven. We have employed

AspectJ as the AOP language in Eclipse-AJDT environment.

The Software includes three packages:

(i) org.forms package: has interface classes SeqForm2,

Welcomeform.

(ii) org.blast package: Important classes are Blast,

BlastException, BlastManager, JQBlast,

RequestIdentifier etc. These classes connect the

application to NCBI BLAST. They help in

interchanging the information.

(iii) org.aspectpack package: All the aspects are stored in

this package.

Crosscutting concerns have been modeled as aspects using the

join point model of AspectJ. Each aspect has its well defined join

points, pointcuts and advice. Figure 2 shows class diagram with

functional aspects. Codes of two aspects are shown in

APPENDIX I for illustration, while Figure 3 shows the sequence

diagram of Updatestatus aspect. Aspects are woven in the main

program by aspect weaver to produce the final system. This is

done by the AspectJ compiler through AJDT. In this study,

AspectJ Development Tools (AJDT) provided good tool support

for editing, building and debugging AspectJ programs on Eclipse

Platform. AJDT provided several aids to assist programmers in

understanding AOP with AspectJ. The most important are Outline

view, Cross References view, Aspect Visualizer and Debugger.

For advice within an aspect, the Outline view shows the places in

the program that will be affected by that advice. The links are

navigable, so clicking on them opens an editor directly at the

affected location. The Cross References view and the standard

Outline view can be considered partners. Whereas the Outline

view shows the structure of the current document, the Cross

References view shows the crosscutting relationships for the

current elements. Figure 4 shows the Cross References view

placed below the corresponding Outline view for the relevant

aspect. These views are essential programming aid and feedback

tools that are used to verify that a piece of advice is matching in

all the join points it was intended to match.

The most powerful tool AJDT provides for understanding the

impact of aspects across the whole system is its Aspect Visualizer.

Figure 5 shows the screen shot of Aspect Visualizer, which

represents the classes and aspects within the application as bars

and the places where aspects affect the code as stripes on the bars.

The lengths of the bars are relative to the file size – the longer the

bar, more lines of code there are in the file that bar represents.

With AJDT it is possible to step through the execution of advice

in the debugger window and observe the full flow of the program

to gain an understanding of the program's behavior. These features

of AJDT help viewing how the application behaves and how

different classes are affected by the aspects. This ensures correct

implementation of aspects.

Bioseqsearch software is menu driven. It has several views and

forms. Welcome screen is the entry screen. Application Service

screen provides various services like format sequence, selection of

program name, database name and E-value. These values are

submitted to NCBI BLAST for similarity search by selecting

submit button. The searched results are displayed by console

view. Saved results can be opened and viewed. Figure 6 shows

screen shot of BLAST output display for a given GenBank ID

input.

For verification and validation, the software was tested by

entering different pieces of known sequences and the searched

outputs were examined. It was found that all the functionalities of

the system worked correctly. This indicated the correctness of the

implementation and the software met the desired specifications

and needs.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

23

SeqForm2

-String sequence

-String inputSeqName

+ displayBlastResult(..)

+ format()

+ isValidSequence(String)

+ runBlasts(…)

+ getBlastTypes()

+ saveBlast(String)

+ fileselection(..)….

JQBlast

-String blastUrl

-int waitTime

+ submitQuery(HaspMap)

+ requestResult(Object)

+ sendQuery(String)

+ createUrlapiQuery(…)

+ waitseq(..)

+ getResult(..) …..

<aspect>

Logging

+pointcut Queryseq(..)

: call after() submitQuery(..)

<aspect>

Nullreport

+pointcut input_seq(..)

: call after() getText(..)

<aspect>

Notifyobserver

+pointcut reportuser(..)

: call after() (..)

<aspect>

Updatestatus

+pointcut status1()

+pointcut status2()

+pointcut status3()

+pointcut status4()

: call before() cleanAllParameters(..)

: call before() runBlasts(..)

: call before() saveBlast(..)

: call before() getBlastFileFromUser()

<aspect>

Validseq

+pointcut seqvalid1(..)

+pointcut seqvalid2(..)

: call after() (..)

: execution around(..)

<aspect>

Tracing

+pointcut checkingseq()

+pointcut tracingQuery()

: execution after() (..)

: execution after() (..)

Figure 2. Class Diagram with functional aspects

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

24

Figure 3. Sequence Diagram of Updatestatus aspect.

Figure 4. Outline, Cross References and Advice view of Updatestatus aspect

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

25

Figure 5. Aspect Visualiser view of Bioseqsearch Application

Figure 6. Console view of BLAST output display for a given GenbankID input

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

26

7. DISCUSSION
This investigation has been made to study the usefulness of the

AOP methodology in real world bioinformatics applications.

Impact of using this methodology on various quality factors has

been examined. Observations made in the study are presented in

this section.

Crosscutting concerns are an inherent part of all practical systems.

Programmers are forced to write tangled and scattered code

whenever they attempt to implement crosscutting concerns. This

increases complexity of the design, degrades program‟s

comprehensibility and decreases modularity, reusability,

maintainability and customizability. In the present study,

encapsulating the crosscutting concerns as aspects using AOP

methodology, eliminated code scattering and tangling. In this

way, concerns were cleanly separated and modularity was

enhanced. This is in accordance with the observations of Bernardi

et al. [30]. Enhancement in modularity reduced the complexity

and resources spent in software development. This allowed a

development team to assign experts to specific jobs, thus

benefiting from their skill and experience. Cleaner separation of

concerns and reduction in tangling, greatly improved readability

of the code. This also resulted in easier comprehension and better

understandability. It is in accordance with the opinion of Parnas

[31] that modularization improves comprehensibility and reduces

complexity.

In the system, there was cleaner assignment of responsibilities of

different modules. This led to improved traceability. Using

aspects it was always possible to add new functionality to the

software without modifying the base program. This enhanced the

extendibility of the software system.

The problem of software maintenance is widely known in

software industry. By some estimates, 50-90% of software

development resources are spent on software maintenance. Spiral

model of Boehm [32] accepts it as part of software evolution.

Thus producing software that is easy to maintain may potentially

save large costs. In the current design, use of aspects increased

maintainability of the program, because it allowed changes to

particular functionality to happen in only one location. AOP

design produces stand alone modules that can be changed

whenever needed. Thus it is easier to adapt the software to

accommodate the changing requirements.

Cohesive modular design in which each module implemented

single concern only, reusability of the modules was considerably

enhanced. It is in agreement with the findings of Elrad et al. [6].

Results of Maghawry and Dawood [33] also support the above

conclusions.

With aspects there are more ways to code the same thing. This

offers more flexibility. It was also noticed that with AOP design,

less code was needed to be written which facilitated easier system

evolution and reduced development time. The end effect was

cheaper implementation and better management of resources.

Reduction in duplicated code led to clearer structure and less

error prone implementation. All these benefits make AOP a

favorite choice for trustworthy computing [34].

However, there are a few limitations of AOP relevant to AspectJ:

1. Debugging an aspect is very tedious. Aspects are

notoriously buggy during evolution because of a lack of

useful error messages and warnings.

2. Generality of the advice is sometimes problematic

because it may generate misleading error messages in a

large system.

3. The capabilities of privileged aspects are far reaching

because they can alter private member variables of any

object within any class. This is very dangerous.

Thus AOP methodology needs to be applied with utmost caution

and discipline.

8. CONCLUSION
In this study, a user friendly and menu driven application software

for the selected bioinformatics software system has been designed

and implemented using AOP methodology in Eclipse-AJDT

environment. A good design is intended to be modular, and this is

achieved through separating the crosscutting concerns. In this

investigation, six crosscutting concerns were identified and they

were modularized as aspects in highly cohesive modular units.

Limitations of OOP design were overcome and the complexity of

the design was considerably reduced due to elimination of code

scattering and tangling. This application convinced that separation

of concerns is one of the main requirements of good system

design and implementation. Several benefits are attributed to

software with well separated concerns.

Use of AOP methodology increased several software quality

factors such as modularity, readability, understandability,

maintainability, extendibility, reusability, correctness, traceability,

flexibility, adaptability and ease of evolution. Reduction in

development time and costing were also perceived.

Thus overall improvements in the quality and performance of the

software system were realized. Several innovative visual and

navigational features of Eclipse-AJDT environment made the

development work of the software easy and reliable. Thus

Eclipse-AJDT is the most suitable environment for developing

aspect-oriented software. However, AOP methodology should be

applied with utmost caution and discipline.

Successful implementation of the application concludes that AOP

methodology in Eclipse-AJDT environment is highly useful in

design and implementation of efficient, cost-effective and quality

bioinformatics software projects.

9. FUTURE WORK

In the coming years, it is expected that the amount of sequence

data generated around the world will outstrip that generated in the

past decade. It may be in different structured formats on web [35].

It is very likely that the potential solution to the huge sequence

data handling/storage problem will be the use of cloud computing.

In this approach, a user will rent processing time on a computer

cluster through a virtual operating system (or „cloud‟), which

would load software and provide access point for running highly

parallelized tasks. Sequencing data will be sent to the cluster

either by disk or the internet. Thus, for next-generation

sequencing, more effort must focus on developing software

compatible for use in a cloud [36] [37] [38].

10. ACKNOWLEDGMENTS
The authors thank Prof. Divya Prabha Nagar, Vice Chancellor,

J.R.N. Rajasthan Vidyapeeth (Deemed) University, Udaipur for

encouragement and providing necessary research facilities.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

27

11. REFERENCES
[1] Kiczales, G. et al. 1997. Aspect-Oriented Programming. In

Proceedings of the European Conference on Object-Oriented

Programming (ECOOP) (Finland, June 1997), LNCS 1241,

Springer-Verlag, 220-242.

[2] Elrad, T., Filman, R.E. and Bader, A. 2001. Aspect-Oriented

Programming, Communications of the ACM 44, 10 (October

2001), 29-32.

[3] Sommerville, I., 2009. Software Engineering, 8th Edition,

Pearson Education Limited.

[4] Kaur, A. and Johari, K. 2009. Identification of Crosscutting

Concerns: A Survey. International Journal of Engineering

Science and Technology 1, 3 (2009), 166-172.

[5] Hursch, W. and Lopes, C.V. 1995. Separation of Concerns.

Technical Report NU-CCS-5-03 (February 1995).

[6] Elrad, T., Moderator: Aksit, M., Kiczales, G. Lieberherr, K.

and Ossher, H. 2001. Discussing Aspects of AOP.

Communications of the ACM 44, 10 (October 2001), 33-38.

[7] Apel, S. 2007. The Role of Features and Aspects in Software

Development, Ph.D. Thesis, University of Magdeberg

(2007).

[8] Gradecki, J. and Lesiecki, N. 2003. Mastering AspectJ,

Wiley Publishing Inc.

[9] Laddad, R. 2003. AspectJ in Action, Manning Publication

Co., Greenwich, CT.

[10] Kiczales, G. et al. 2001. Getting Started with AspectJ.

Communications of the ACM 44, 10 (October 2001), 59-65.

[11] Kiczales, G. et al. 2001. An Overview of AspectJ, In

Proceedings of ECOOP 2001 (Budapest, June 2001), LNCS

2072, 327-353.

[12] Colyer, A., Clements, A., Harley, G. and Webster, M. 2004.

Eclipse AspectJ: Aspect-Oriented Programming with

AspectJ and the AspectJ Development Tools, Addison

Wesley Professional.

[13] AJDT: Frequently Asked Questions.

http://www.eclipse.org/ajdt/faq.php

[14] Eclipse Platform Overview, The Eclipse Foundation,

http://www.eclipse.org/whitepapers/eclipse-platform-

whitepaper.pdf

[15] Colyer, A. and Clement, A. 2005. Aspect-Oriented

Programming with AspectJ, IBM Systems Journal, 44, 2

(2005).

[16] Sharma, A. and Sarangdevot, S.S., 2010. Eclipse-AJDT: A

Diamond from Open Source Technology, In Proc. Int‟l Conf.

Next Generation Communication and Computing Systems,

Dec. 25-26, 2010, Chandigarh, India, 120-125.

[17] Sarangdevot, S.S. and Sharma, A. 2008-09. Investigating the

application of AOP methodology in development of Banking

Application Software Using Eclipse-AJDT environment.

Journal of Management Sciences, AIMS, Udaipur, Rajasthan

(2008-09), 124-141.

[18] Sharma, A. and Sarangdevot, S.S., 2010. Investigating the

Application of AOP Methodology in Development of

Insurance Application Software Using Eclipse-AJDT

Environment, In Proc. Int‟l Conf. Computer Engineering and

Technology (ICCT ‟10), Nov. 13-14, 2010, Jodhpur, India,

D17-D25.

[19] Bal, H. and Hujol, J. 2007. Java for Bioinformatics and

Biomedical Applications, Springer.

[20] Bergeron, B. 2007. Bioinformatics Computing, Pearson-

Prentice Hall.

[21] Lesk, A.M. 2004. Introduction to Bioinformatics, Oxford.

[22] Sergio Anibal de Carvalho Jr. 2003. Sequence Alignment

Algorithms, M.Sc. Thesis, King‟s College, University of

London.

[23] Wong, L. (Ed.), 2004. The Practical Bioinformatician, World

Scientific Publishing Co. Pte. Ltd., Singapore.

[24] Atwood T. K. and Parry-Smith, D.J. 1999. Introduction to

Bioinformatics, Pearson.

[25] Bourgaze, D., Jewell, T.R. and Buiser, R. 2004.

Biotechnology: Demystifying the Concepts, Pearson.

[26] Dayhoff, M. O. 1978. Atlas of Protein Sequence and

Structure, vol. 5, Suppl. 3, National Biomedical Research

Foundation, Washington, DC.

[27] Baxevanis, A. D. and Ouellette, B. F. F. (Eds.) 2009.

Bioinformatics: A Practical Guide to the Analysis of Genes

and Proteins, Wiley-India.

[28] Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and

Lipman, D. J. 1991. Basic Local Alignment Search Tool, J.

Mol. Biol. 215, 403-410.

[29] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J.,

Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped

BLAST and PSI-BLAST: a new generation of protein

database search programs, Nucl. Acids Res. 25, 3389-3402.

[30] Bernardi, M. L. and Lucca, G. A. D., Improving Design

Patterns Modularity Using Aspect Orientation, RCOST,

University of Saunio, Italy.

[31] Parnas, D. L. 1972. On the Criteria To Be Used in

Decomposing Systems into Modules, Communications of the

ACM, 15, 12, 1053-1058.

[32] Boehm, B. 1986. A Spiral Model of Software Development

and Enhancement, ACM SIGSOFT Software Engineering

Notes, ACM, 11, 4 (August, 1986), 14-24.

[33] Maghawry, N. E. and Dawood, A. R., “Aspect-Oriented GoF

Design Patterns,”

http://infos2010.fci.cu.edu.eg/uploadCamera2010/noura.elma

ghawry/AO_Gof_Patterns.pdf

[34] Safonov, V. O. 2008. Using Aspect-Oriented Programming

for Trustworthy Software Development, John Wiley & Sons,

Inc., New Jersey.

[35] Cafarella, M.J. 2011. Structured Data on the Web,

Communications of the ACM, 54 (2), February, 2011, 72-79.

[36] Editorial, Gathering clouds and a sequencing storm, Nature

Biotechnology, 28, 1, 2010.

[37] Sansom, C., 2010. Up in a cloud?, Nature Biotechnology, 28,

13-15 (2010).

[38] O‟Conner, B.D. et al., 2010. SeqWare Query Engine :

Storing and searching sequence data in the cloud, BMC

Bioinformatics 2010, 11(Suppl 12) : S2 (21 Dec. 2010).

http://infos2010.fci.cu.edu.eg/uploadCamera2010/noura.elmaghawry/AO_Gof_Patterns.pdf
http://infos2010.fci.cu.edu.eg/uploadCamera2010/noura.elmaghawry/AO_Gof_Patterns.pdf

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

28

APPENDIX I

