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ABSTRACT 

Motion blur caused by relative motion between the camera and 

the object being captured is an everyday situation that 

deteriorates the quality of the images largely. Even a photograph 

captured in low light conditions or that of a fast moving object 

undergo motion blur and cause significant degradation of the 

image and demands for deblurring the same to reconstruct the 

original image. The paper addresses this commonly encountered 

problem and carries out a thorough experimental investigation of 

several non-blind and blind motion deblurring algorithms. Both 

qualitative and quantitative assessment based on popular 

performance metrics viz., peak signal-to-noise ratio (PSNR) and 

mean squared error (MSE) is performed. Through this 

comparative analysis the properties and limitations of these 

deblurring algorithms are explored and verified.  

General Terms 
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Keywords 
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1. INTRODUCTION 
Image motion deblurring, although being a traditional problem 

in image processing, is still a challenging area and has always 

attracted the attention of both research community and 

photographic practitioners equally till date. A number of real 

world problems from astronomy, medical imaging up to 

consumer level photography demands a good quality image for 

number of reasons, viz., object detection, identification or 

classification. Thus, there is undying need for removing motion 

blur (due to any reason), by means of image deblurring 

algorithms [1]. There also exist compensation mechanisms to 

prevent this effect to occur, such as gyroscope and inertial 

sensors in case of aerial sensing, moving lens systems or optical 

image stabilization systems in the case of digital cameras [2, 15]. 

These solutions partially remove the blur at the expense of 

higher cost, weight and energy consumption. The rapidly 

growing field of digital photography demands on more and more 

improvements in image quality at lower costs and 

computationally faster post-processing solutions by virtue of 

recent advances in image processing. 

The overall approach comprises of taking a standard (non-

blurred) image, creating a known blurring function (point spread 

function-PSF) and then filtering the image with this function so 

as to add blur into it. This image is further corrupted by different 

amount of additive Gaussian noise. The aim is to deblur this 

image by various motion deblurring algorithms viz., direct 

inverse and pseudo-inverse filtering, Wiener and parametric 

Wiener filtering, constrained least squares filtering, Richardson-

Lucy algorithm and iterative blind deconvolution algorithm. 

Further their properties and performances are analyzed and 

compared as well. Experimental evaluation is carried out in 

MATLAB environment on standard lena and cameraman images 

in a variety of blur and noise conditions.   

The rest of the paper is arranged as follows. The mathematical 

modeling of linear motion blur is discussed in Section 2. An 

overview of the important deblurring algorithms and their detail 

characteristics are presented in Section 3. A complete 

experimental set-up is described in Section 4. Section 5 

comprises of both qualitative and quantitative results obtained 

based on the experiments conducted and performance evaluation 

of the deblurring algorithms discussed in earlier section. 

Conclusions are drawn in Section 6 and Section 7 briefs the 

future scope for further improving the existing algorithms and 

challenges in doing so. 

 

2. MODELING LINEAR MOTION BLUR 
A linear mathematical model is used to represent the 

degradation of the digital image caused by motion blur [1, 9]. 

The original test image is considered to be a blur-free M N  

test image f  which is convolved with a convolution kernel h , 

also referred to as the point spread function (PSF). In the spatial 

domain, the distortion operator, i.e., the PSF describes the 

degree to which an optical system blurs (spreads) a point of light. 

It is due to the capture process where some noise gets introduced, 

which is modeled with the additive Gaussian noise term n . Thus, 

the blurred and noisy M N  image g , is modeled as, 

( , ) ( , ) ( , ) ( , )

, . ( , ) ( , ),

g x y f x y h x y n x y

f r c h x r y c drdc n x y
                 (1) 

where h  is a linear PSF, f  is the ideal image and g is the 

observed image. It is considered that the type of blur is spatially 

invariant i.e., the blur is independent of position or a blurred 

object looks the same irrespective of its position in the image. In 

this case and for the uniform linear motion, the PSF ( , )h x y is 

given by: 

1 2 2
( , ; , ) tan

2

0

L x
h x y L if x y and

L y

elsewhere

             (2) 

As seen in Eq. (2), motion blur depends on two parameters: 

motion length ( L ) and motion direction ( ). The problem of 

identifying these parameters from the motion blurred scene is 

termed as PSF estimation [4]. The process of motion deblurring 
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can be divided into two parts: the estimation of the function that 

caused the blur, and applying a deblurring algorithm. Based on 

the assumption of a generalized Gaussian model for the additive 

noise, this paper discusses only about applying deblurring 

algorithms to the motion blurred images, whereas for the first 

part i.e., the PSF model for motion blur is assumed to be known. 

Deconvolution results may deviate from the actual images 

because of presence of noise and low pass filtering effect in 

original image.  

 

3. CLASSICAL DECONVOLUTION 

METHODS 
The classical deconvolution algorithms perform deblurring 

operation on the already blurred and noise corrupted image g  

and produces an estimate f̂ of the undegraded image f . The 

non-blind methods which are discussed here are namely, inverse 

and pseudo-inverse filter, Wiener and parametric-Wiener filter; 

constrained least squares filter (CLS), Richardson-Lucy (R-L) 

algorithm [5], where it is assumed that the characteristics of the 

degrading system and the noise are known a priori. Another 

class which is based on real life fact that such information about 

degrading system at the time of image formation is rarely 

available is blind deconvolution. One of the methods of this 

class is the iterative blind deconvolution (IBD), it is also 

described in detail. A large class of inverse problems uses these 

algorithms based on the available information about the blurring 

phenomenon in a specific application [18]. 

 

3.1 Direct Inverse Filtering 
If a good model of the blurring function that corrupted an image 

is known or can be developed, then inverse filtering is the 

quickest and easiest way to restore the blurred image. Since 

blurring is equivalent to low pass filtering of an image, inverse 

filtering provides with high pass filtering action to reconstruct 

the blurred image without much effort. Figure 1 depicts 

complete blurring and deblurring operation that the image 

undergoes in case of direct inverse filtering. 

 
Fig 1: A block diagram representation of direct inverse filter. 

 

The notations used are, g is the blurred and noise corrupted 

image, f̂ is the estimate of the undegraded image f , the 

additive Gaussian noise is denoted as . Referring Eq. (1), 

convolution can be alternatively implemented through the use of 

the frequency domain, which yields 

 

            ( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v                    (3) 

 

where ( , )u v  are the spatial frequency coordinates and capitals 

represent Fourier transforms. When the additive noise is 

unknown, it is assumed to be zero. Rewriting Eq. (3), the 

spectral representation of estimated image can be directly 

obtained from the following relationship: 

                        ( , )
ˆ ( , )

( , )

G u v
F u v

H u v

                           (4) 

This gives us direct filtering requiring only the blur PSF as a 

priori knowledge, and it allows for perfect restoration in the 

case that noise is absent. Unfortunately, since the inverse filter is 

a form of high pass filer, inverse filtering responds very badly to 

any noise that is present in the image because noise tends to be 

high frequency. Although there are some schemes to improve 

the performance of inverse filter viz., thresholding and iterative 

methods; they tries to tackle the noise term for limiting the 

amplification of it, but there lies trade-off between deblurring 

and denoising. A thresholding scheme that handles the smaller 

or near zero values of inverse filter is pseudo-inverse filtering. 

So instead of making a full inverse out of H (i.e., high pass 

filter), it is modified to become „less‟ full inverse as follows, 

              
1

| ( , ) |
( , ) ( , )

0 | ( , ) |

for H u v
H u v H u vinv

for H u v

          (5) 

So the higher the value of , the closer Hinv  is towards the full 

inverse filter. It can be selected in the range of 0 1. The 

smaller the , the less high pass the filter is, which means that it 

amplifies noise less. It also means, however, that the edges will 

not be as sharp as they could be, but it performs better than 

direct inverse method. 

 

3.2 Wiener Filter 
The Wiener filter [5] also termed as seeks to minimize the 

following error function, 

            
2

ˆ( , ) ( , )MSE E f x y f x y                     (6) 

where [.]E  denotes the expected value operator, ( , )f x y  and 

ˆ ( , )f x y stands for original and estimated image respectively. 

The solution to this optimization task in the frequency domain 

can be written as follows, 

         ( , )
( , )

( , )
( , ) ( , )

( , )

H u v
H u vwiener

S u vn
H u v H u v

S u vf

                (7) 

where
*

( , )H u v  is the complex conjugate of ( , )H u v , 

( , )S u vf
and ( , )S u vn  are the power spectrum of the ideal 

image and the noise, respectively. The power spectrum is a 

measure for the average signal power per spatial frequency 

( , )u v  carried by the image. In the noiseless case ( , ) 0S u vn , 

thus the Wiener filter approximates the inverse filter. When the 

recorded image is noisy, the Wiener filter trades-off the 

restoration by inverse filtering and suppression of noise for 

those frequencies where ( , )H u v  is closer to 0. The important 

factors in this trade-off are the power spectra of the ideal image 

and the noise. The ratio of ( , )S u vn and ( , )S u vf
in Eq. (7) is 

termed as noise-to-signal ratio (NSR). Wiener filter requires the 

power spectra of noise and image to be known. When they are 

not known the ratio is approximated by user and is determined 

by trial and error such as to minimize the error function. The 
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form obtained in Eq. (8) is thus termed as parametric-Wiener 

filter. 

                  ( , )
( , )

2
( , )

H u v
H u vwiener

H u v K

                           (8) 

where K  has a small positive value and is usually selected in 

the range of 0 1K  so as to minimize the error function. 

Wiener performs better than direct inverse method in presence 

of noise, but subject to a priori knowledge about blurring 

function, the image and noise power spectrums and/or 

appropriate selection of K . Even better results than the known 

power spectra method can be achieved using the known 

autocorrelations of the original image and the noise. As the 

autocorrelation of noise could in many cases be considered 

relatively constant over time, a high pass filtering of the 

autocorrelation sequence, could lead to substantial reduction of 

the noise effect. 

 

3.3 Constrained Least Squares Filter 
The constrained least-squares filter (CLS) [6, 5] is another 

approach for overcoming some of the difficulties of the inverse 

filter (excessive noise amplification) and of the Wiener filters 

(estimation of the power spectrum of the ideal image), while still 

retaining the simplicity of a spatially invariant linear filter. But it 

is required to have a priori knowledge about mean and variance 

of the noise. The CLS algorithm is based on finding a direct 

solution using a criterion C , which ensures optimal smoothness 

of the deblurred image. It provides more reasonable expectation 

for the restored image that it satisfies 

                      
2 2ˆg h f                          (9) 

Thus the filter reconstruction task is to find the minimum of 

             
1 1

0 01 2

2
2

( , )1 2

N M

k k
C f k k              (10) 

under the constraint of Eq. (9). In the frequency domain the 

solution to this problem can be written as follows: 

         
( , )

( , )
( , ) ( , ) ( , ) ( , )

H u v
H u vcls

H u v H u v P u v P u v

        (11) 

where  is the parameter which has to be adjusted manually or 

iteratively, to fulfill the constraint C and ( , )P u v is the 

Laplacian operator in the frequency domain. Choosing the value 

of the regularization parameter  is a critical issue in 

regularized restoration, since it controls the trade-off between 

fidelity to the data and smoothness of the solution and therefore 

the quality of the restored image. A number of approaches for 

determining its value are presented and compared in [8, 13]. 

 

3.4 Richardson-Lucy Algorithm 
The Richardson-Lucy (R-L) algorithm can be viewed as a 

maximum-likelihood (ML) method for image deblurring when 

the data noise is assumed to be Poissonian. This iterative method 

was developed independently by Richardson and Lucy [10, 7], is 

the technique most widely used for deblurring and restoration of 

images. Since R-L exploits the a priori knowledge regarding the 

statistics of photon counts, it should be expected to yield more 

accurate reconstructions than an approach that does not use this 

information. The algorithm works with images blurred by a 

valid point spread function. Also, the restored images are robust 

against small errors in the point spread function, which is very 

important when the PSF is not known exactly and only 

estimation is available. The R-L algorithm is well described in 

[11]. The R-L method forces the restored image to be non-

negative. Given that the degraded image and the first guess are 

everywhere non-negative, none of further approximations can be 

negative. The steps of the algorithm are summarized below: 

The algorithm consists of one initial and three iterative steps. 

Initially the first approximation of the restored image 0f̂ must 

be made, which is typically the constant average of all pixel 

values in the blurred image g . In the iterative steps, further, the 

( 1)
th

n  estimate of the restored image is given by the 

th
n estimate of the restored image multiplied by a correction 

image i.e., 

                    ˆ ˆ
1f fn nn                        (12) 

where 
1

ˆ
nf is the new and f̂n is the current approximation of 

restored image respectively, n is known as the correction 

factor and . denotes a “pixel-by-pixel” multiplication. The 

correction factor is computed as, 

                       
ˆ

g
hn

h fn


                       (13) 

where h


 denotes the PSF in reverse order. The algorithm 

continues with step 2 until the corrections are sufficiently small. 

While using this method, there arises an obvious question of 

where to stop. It is difficult to claim any specific value for the 

number of iterations; a good solution depends on the size and 

complexity of the PSF matrix. The algorithm usually reaches a 

stable solution very quickly (few steps) with a small PSF matrix. 

But if one stops after a very few iterations then the image may 

be very smooth. On the other hand, increasing the number of 

iterations not only slows down the computational process, but 

also amplifies noise and introduces the ringing effect (as shown 

in Figure 9). Proper boundary condition selection and/or using 

the built-in edge tapering function in Matlab tries to reduce these 

ringing artifacts. Some additional methods for ringing reduction 

are given in [3]. Thus for the “good” quality of restored image, 

the optimal number of iterations are determined manually for 

every image as per the PSF size. 

 

3.5 Iterative Blind-deconvolution Algorithm 
The techniques discussed so far belongs to the class of classical 

image restoration or deblurring, where blurring function is 

known and the degradation process is inverted using one of the 

many known deblurring algorithms. The selection of the 

particular algorithm depends upon mathematical model of both 

the degradation process and image. On the other hand, blind 

image deblurring handles more difficult, but realistic problem 

where the amount of blur or degradation is not known and little 

information is available about the original image; thus previous 

algorithms are not suitable as they all require prior knowledge of 

the PSF that was used to blur it. In these situations, an 

algorithmic approach that combines blur identification and 

image deblurring both is required. Such an estimation problem, 
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assuming the linear degradation model, is termed as blind image 

deconvolution (BID) [14, 18], where the image f(x; y) must be 

identified directly from the convolved signal g(x; y) using partial 

or no information about the blurring process and true image. 

Thus, BID is the process of estimating both the true image and 

the blur from the degraded image characteristics using partial 

information about the imaging system. BID problem is classified 

into two categories depending on at what stage the blur is being 

identified i.e., a priori or jointly with the image [4, 16]: 

One of the popular blind deconvolution algorithms is the 

iterative blind deconvolution (IBD) algorithm proposed by [12]. 

The IBD algorithm iteratively estimates the original image as 

well as the PSF. IBD makes use of spatial domain as well as 

frequency domain constraints. In spatial domain, positivity 

constraint is used on both the image as well as PSF. Positivity is 

used in spatial domain because image pixel intensity values are 

always positive. Similarly, PSF values are observed to be always 

positive. The Fourier domain constraint may be described as 

constraining the product of the Fourier spectra of f(x; y) and h(x; 

y) to be equal to the Fourier spectra of g(x; y), as followed in Eq. 

(14). 

                      ( , ) ( , ) ( , )G u v F u v H u v                    (14) 

3.5.1 IBD Algorithm 
1. Estimate a non-negative-valued initial PSF ( , )h x y  

with random values. 

2. Find ˆ ( , )H u vk  by taking discrete Fourier transform 

(DFT) of ( , )h x yk .          

3. Compute ( , )F u vk i.e. the first estimate of the original 

image spectrum from ( , )G u v and ˆ ( , )H u vk , 

as
( , )

( , )
ˆ ( , )

G u v
F u vk

H u vk

. 

4. Compute the inverse Fourier transform (IDFT) 

of ( , )F u vk , to obtain ( , )f x yk  .  

5.  Impose the spatial domain constraint of positivity by 

putting zero to all pixels of ( , )f x yk that have a 

negative value. 

6. Obtain ˆ ( , )F u vk after Fourier transforming a positive 

constrained estimate ˆ ( , )f x yk  .  

7. Compute ( , )H u vk , from ( , )G u v and ˆ ( , )F u vk , as 

( , )
( , )

ˆ ( , )

G u v
H u vk

F u vk

. 

8. Compute the IDFT of the next spectrum 

estimate ( , )H u vk , to obtain ( , )h x yk . 

9. Impose the positivity constraints on ( , )h x yk , that 

yields the next PSF estimate. 

The iterative loop is repeated until a satisfactory restored image 

is obtained. Although the calculations involved here are quite 

straightforward and appealing, the output is not definite, the 

algorithm may run into infinite loop without converging and it is 

quite sensitive to the initial guess [13, 14]. 

 

4. EXPERIMENTAL SET-UP 
The experiments of motion blurring and deblurring the images 

are carried out in Matlab 7.0.1. The experimentation set-up is as 

follows, 

 Parameter selection scheme: 

– Test images: lena and cameraman  

– Type of blur: Motion Blur (Attributes-Length= 10 

pixels, Angle= 45 degrees) 

– Type of noise: Additive Gaussian with mean=0, 

standard deviation=1, 10, 20, 30, 40, 50  

 Deblurring techniques:  

– Direct Inverse filtering 

– Pseudo Inverse filtering ( 0.1) 
– Wiener filter by known image and noise power 

spectrums and by known autocorrelations of image 

and noise 

– Parametric Wiener ( 0.1,0.001,0.0001K ) 

– Constrained Least Squares (CLS) method  

        ( 0.4,0.04,0.004,0.1 ) 

– Richardson-Lucy Algorithm (Poisson noise with 

var.= 0.002, 0.0001 and PSF size= 5 5 and 9 9 ) 

– Iterative blind deconvolution. 

 Evaluation metrics: MSE and PSNR. 

To assess the performance of the different deblurring methods 

and to evaluate their comparative performance, two different 

standard performance indices have been used in this paper. They 

are namely Peak Signal to Noise Ratio (PSNR) and Mean 

Squared Error (MSE) and are defined as: 

                         
2

255
( ) 10 log10PSNR dB

MSE

                (15) 

                 
1 1

21
ˆ, ,

M N

x y
MSE f x y f x y

MN

             (16) 

where MN is the size of the image, ,f x y  and ˆ ,f x y  are 

the pixel values at ( , )
th

x y location of original and restored 

image respectively. The higher the PSNR and lower the MSE in 

the deblurred image, the better is its quality. These metrics serve 

to provide an objective standard to compare different techniques. 

Moreover human perception is the visual key indicator of 

improvement in quality for subjective comparisons of various 

deblurring algorithms. 

 

5. PERFORMANCE EVALUATION 

5.1 Direct Inverse Filtering 
Figure 2 shows the results obtained with direct inverse filtering 

method. The only-motion blurred cameraman image without 

noise is successfully restored in this method. 
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Fig 2: Results obtained using direct inverse filtering (a) 

Original image, (b) Blurred image, (c) Inverse filtered image. 

 

5.2 Inverse and Pseudo-inverse Filtering 
Now noise is added in the earlier blurred image and is filtered by 

two ways- by direct inverse filtering and pseudo-inverse filtering. 

As seen in the resulting Figure 3, in the direct inverse filter, 

noise completely overshadows the underlying image, whereas 

the pseudo-inverse filtering ( 0.1) attempts to give better 

quality result than the former method. 

 

 
Fig 3: Results obtained using inverse and pseudo-inverse 

filtering (a) Original image, (b) Blurred image, (c) Blurred 

and noisy image (d) Inverse filtered image (e) Pseudo-inverse 

filtered image. 

 

5.3 Wiener Filtering 
Figure 4 presents plot of PSNR versus standard deviation 

comparison for original blurred image and Wiener filtered image 

by known power spectra and autocorrelation methods. As seen 

below the autocorrelation method gives more PSNR than the 

power spectra method. Similarly, both the methods are 

compared for the resulting MSE of the restored images and 

original MSE for varying the standard deviation in Figure 5. It 

shows that the autocorrelation method gives least MSE than the 

power spectra method and original one. 

 

5.4 Parametric Wiener Filtering 
When the power spectra or autocorrelation can not be 

determined directly, the parametric Wiener filter is used. In this 

method the noise-to-signal power ratio is approximated by the 

factor K , which is substituted by trial and error as a small 

positive value. Figure 6 shows the results by parametric Wiener 

filtering for blurred noisy image with BSNR of 20dB; for three 

different values of K i.e., for K = 0.1, 0.01 and 0.001. Figure 7 

depicts the plot of PSNR versus standard deviation for original 

blurred image and parametric Wiener filtered image for three 

different values of K . It can be seen that PSNR is more for 

smaller values of K , as the image becomes sharper but the noise  

 
Fig 4: A plot of PSNR versus standard deviation for original 

blurred image and Wiener filtered image by known power 

spectra and autocorrelation methods. 

 

amplification problem which becomes more noticeable, trades 

off the selection of this value over the larger values of K , for 

which noise is suppressed but edges are blunt due to smoothness. 

 

 
Fig 5: A plot of MSE versus standard deviation for original 

blurred image and Wiener filtered image by known power 

spectra and autocorrelation methods. 

 

 
Fig 6: Results obtained using parametric Wiener filtering 

with different values of K (a) Blurred and noisy image with 

BSNR=20 dB, (b) K = 0.1, (c) K = 0.01 (d) K =0.001. 
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Fig 7: A plot of PSNR versus standard deviation for original 

blurred image and parametric Wiener filtered image for 

three different values of K. 

 

5.5 Constrained least-squares method 
The plot of PSNR versus standard deviation for original blurred 

image and constrained least squares filtered images for different 

values of  in Figure 9 and that of MSE versus standard 

deviation in Figure 8 shows optimal performance (larger PSNR 

and smaller MSE) for smaller value of 0.004 . At this value, 

although edges are sharpened but the problem of ringing 

becomes prominent. 

 

 
Fig 8: A plot of PSNR versus standard deviation for original 

blurred image and constrained least squares filtered image 

for different values of . 

 

 
Fig 9: A plot of MSE versus standard deviation for original 

blurred image and constrained least squares filtered image 

for different values of . 

 

5.6 Richardson-Lucy Algorithm 
The results of deblurred image by iterative Richardson-Lucy (R-

L) algorithm based upon Poisson noise statistics are collectively 

presented in Figure 10 for the originally motion blurred and 

noise corrupted (Poissonian noise with variance= 0.002) image. 

As the numbers of iterations of R-L algorithm are increased, the 

ringing artifacts become prominent in the deblurred images, 

along with increased amount of execution time. Thus, this 

method is slower as compared to previous methods of deblurring.  

 

 
Fig 10: Results obtained using Richardson-Lucy algorithm 

with number of iterations equal to (a) 10, (b) 15, (c) 25 and 

(d) 35. 

 

Figure 11 and 12 show the plots of PSNR versus number of 

iterations for two different sizes of PSF i.e., 5 5 and 9 9 and 

for two different noisy conditions i.e., variances= 0.002 and 

0.0001. PSNR is better for 9 9 i.e., large PSF size and it is 

lowered in case of more noise even though PSF size is large. 

Too large sizes of PSF distort the image quality largely, 

increases the execution time and strong deconvolution artifacts 

incorporates if number of iterations are more than 50. Thus, it is 

critical to select the PSF size and number of iterations for 

successful deblurring for limited knowledge about PSF. 

 

 
Fig 11: A plot of PSNR versus number of iterations for two 

different sizes of PSF i.e., 5 5and 9 9 for variance= 0.002. 

 

5.7 Iterative Blind-deconvolution Algorithm 
Inputs to the IBD algorithm are original blurred image, an initial 

guess of the PSF and the number of iterations. It follows same 

mathematical process as Richardson-Lucy, except it can be used 

without knowledge of PSF and restores the image as well as PSF 

[16, 17]. While implementing the IBD algorithm in Matlab, it is 

applied on the motion blurred cameraman image in two different 

ways [5]:  
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Fig 12: A plot of PSNR versus number of iterations for two 

different sizes of PSF i.e., 5 5 and 9 9 for variance= 

0.0001. 

I. It generates an initial PSF of chosen values of the motion 

attributes of the blur and then gets the size of that PSF 

for the initial PSF guess, but with all elements set to one.  

II. The size of the PSF is simply guessed with all elements 

set equal to one or the matrix size of the desired PSF can 

simply be specified and the algorithm iterates to find the 

best values. 

Figure 13 shows the results obtained using IBD algorithm for 

these two cases.  As verified experimentally, if the initial guess 

of the PSF is the same size as the PSF that caused the blur 

(method I), lot of ringing artifacts are observed around the sharp 

intensity contrast areas in the deblurred image as shown in 

Figure (13-d). 

 

  
 

Fig 13: Results obtained using iterative blind deconvolution 

algorithm (a) Original image, (b) Original PSF, (c) Blurred 

image, (d) Restored image with case (1), (e) Restored PSF for 

case (1), (f) Weight array, (g)-(h) Newly deblurred image 

and Restored PSF after 50 iterations for case (2), (i) Newly 

deblurred image after 150 iterations for case (2). 

To minimize the ringing effect, a weight array is created to 

exclude areas of high contrast from the deblurring operation. 

Further, to improve the deblurring, the PSF guess is refined 

according to method II and IBD algorithm is iterated for 

different number of iterations and various sizes of PSF until 

satisfactory deblurred image is resulted. Figure (13-e and h) 

displays the restored PSF, observation of which helps refining 

the new PSF size. 

Figure 14 and 15 reflects the quantitative measure for the IBD 

algorithm. As shown in the plots, PSNR level goes on 

decreasing and MSE curves goes on increasing for increase in 

size of PSFs, which is the indication of lowering the quality of 

deblurred image. Also it implies that the convergence of the 

algorithm is not well defined and is subject to the perception of 

the quality of results either at the end of every iteration or after 

few number of iterations.  Histogram plot in Figure 16 accounts 

for the processing or computation time required to run IBD for 

the specified number of iterations. Although for increasing 

number of iterations increases the computational time, it doesn‟t 

always show improvement in the quality of deblurring for large 

number of iterations. It was found that for the iterations above 

200, the amount of ringing and deblurring is remaining almost 

same. So there is no point in further increasing the number of 

iterations. 

 
Fig 14: A plot of PSNR versus number of iterations for 

different sizes of PSF for IBD.  

 

 
Fig 15: A plot of MSE versus number of iterations for 

different sizes of PSF for IBD.  

 

6. CONCLUSIONS 
In this paper, the performances of the basic deblurring 

techniques are studied and compared only for synthetically 

blurred images. The most simple algorithm direct inverse  
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Fig 16: Processing time versus number of iterations for IBD. 

 

filtering fails completely in presence of noise, as the noise is 

amplified badly. Both the Wiener and constrained least squares 

algorithms show comparable results, which comprise a lot of 

low frequency ringing, but restore the contours more or less 

satisfactorily. The deblurred images by these two methods show 

acceptable results in low noise conditions. But again noise 

quality in deblurred image is subject to the amount of noise, 

extent of blur and choosing the appropriate regularization term. 

As the Richardson-Lucy algorithm is derived from counting 

statistics by means of maximizing the likelihood of the solution, 

it restores the seriously blurred and noisy image in real life 

better than the former two methods and outperforms. In the IBD 

method, the majority of the blur is successfully removed, but 

ringing effect could be seen across the entire image and some of 

the details of the image are getting washed away. Thus, in the 

blind deconvolution, it is possible to restore blurred image based 

upon correct PSF estimation and sufficient a priori knowledge 

about the image and noise.  
 

7. FUTURE SCOPE 
Motion deblurring work can be further extended on real images, 

where lot of other aspects including retaining color information 

and effective noise suppression need additional concern along 

with basic deblurring. It will be interesting to note how Wiener 

and CLS perform if effective denoising is performed earlier and 

then these methods are applied for deblurring. In case of R-L 

and IBD, longer run time, ringing artifacts and appropriate 

termination criteria for the iterations are the important issues, 

where further improvements need attention. IBD particularly 

tackles the harder and realistic problem, which becomes more 

complex for spatially varying object motion and recovery of 

original image from such type of blurs with no knowledge of 

PSF leaves a scope for developing more robust algorithms. 
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