
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

27

Dependency Free Distributed Database Caching for

Web Applications and Web Services

Hemant Kumar Mehta
School of Computer Science and IT,

Devi Ahilya University
Indore, India

Priyesh Kanungo
Patel College of Science &

Technology
Indore, India

Manohar Chandwani
Department of Computer

Engineering, IET, Devi Ahilya
University, Indore, India

ABSTRACT

Rapid growth of technology enabled several newer scientific and

commercial applications to be developed, demanding increased

computing power. Distributed computing is necessary to satisfy

the increasing demand of these applications. Almost every

commercial/ scientific application is developed as either web

applications or web services or both. The users of such system

are increasing exponentially. Generally, these web applications

are dynamic in nature. The high demand servers receive

thousands of requests in a second. This overloads the database

and degrades the overall performance of the applications. In

multitier web applications and web services the web based

frontend, business logic and databases are deployed over the

different servers. To avoid the network delay and to improve the

performance of such applications a new distributed hash-based

database caching (DHBDC) has already presented [18].

However, to use DHBDC the applications must be modified to

access the data from the cache. This paper modifies the DHBDC

in such a manner that these applications need not to be

upgraded. This new strategy called Dependency Free Distributed

Database Caching (DFDDC and is integrated with a custom

JDBC driver to achieve the dependency freedom. The prototype

of new strategy has been implemented and promising results

have been obtained from the prototype.

General Terms

Caching, Web Applications, Performance Enhancements

Keywords

Database, Database Caching, DHT, Multitier Web Applications,

Web Service

1. INTRODUCTION
The popular web applications have observed exponential growth

in terms of number of requests from different users. Now a days,

various kinds of applications are implemented as web

applications. These applications vary in the load they generate

and the level of usage of the database in the request processing.

These web applications use database at various level e.g. (i)

simple search based applications, used to display the

information stored in the database, (ii) heavy database

transaction, sites with heavy commercial transaction involving

secure transaction, (iii) web sites with multimedia content and

(iv) web services develop to be accessed from the various web

application etc.

Different types of web applications generate load from low level

to very high level. Web services are web applications that use

the hyper text transfer protocol (HTTP) for communication,

similar to the web sites. However, the web services differ from

the web application in the manner they have been accessed by

the clients. The web sites are implemented for human users

while the web services are intended to be used by web

applications. Web services are not collection of static and

dynamic web pages like the web sites, instead, they hosts

various functionalities in the form of functions or methods that

are accessible through the various HTTP client applications.

The smaller web applications are deployed over the single server

running both the web server and database server. The web

application with large number of users and requests cannot be

effectively hosted on the single server as it may be overloaded

while handling large number of requests by including results

from the database. To cope up with this problem, the

functionalities of these applications are divided among the

multiple tiers. Depending on the load on the web application,

each function may be deployed on a separate server. In this

manner, the specialized hardware may be used for processing.

Web applications divided into tiered form is called multitier web

application as shown in the Figure 1.

Web application depicted in Figure 1 is a three-tier application.

The client sends the request to access some resource on web

application. This request is received by a frontend web server.

This web server then transfers this request to the application

server having the business logic of the application. This

application server interacts with the database server to satisfy

the user’s request. This division of the requests into multiple

levels avoids the overloading of the single server. However, the

multitier web applications introduces extra load on network

bandwidth and introduces the network delay as the frontend

server, business logic on application server and database servers

are three different systems.

Web caching is a solution for the bandwidth and network delay

problems in the multitier applications. Frequently accessed data

items are stored in the main memory of the either frontend web

server or the application server. The data item requested by the

client is first searched in the cache memory. If data is found, it is

returned from the cache memory. If data is not available in

cache memory then it is searched into the database. There are

several issues associated with the cache handling. These issues

are selection of the candidate data to be cached, the location of

the caching, freshness, consistency of the data etc. The candidate

for caching must be the dynamic data that is changing but stable

for some time period so that it is meaningful to be cached.

Similarly, if the access frequency is too high, the data with short

life span may also be cached. Ideally, the data should be cached

at the nearest location to the users. However, the data security

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

28

issues must be considered while selecting the location of the

caching.

Fig 1: The multitier web applications

The data freshness and consistency are the most challenging task

in the caching mechanism. An effective mechanism is required

for the identification of the data that have been changed or

updated. This process is called cache validation.

The databases used in the multitier application are heavy weight

databases and therefore kept away from the application servers.

Database caching is the process of the caching of data of the

main database server into a light weight database at application

server. These light weight databases keep the frequently

accessed data at the application server. This implementation of

database caching improves the throughput of the web

application by avoiding the network overheads. The distributed

implementation of database caching can further improve the

performance of the web server by handling the bursty load of the

users’ requests. The distributed database caching can be

implemented on web server or application cluster, where several

servers are being used for serving users’ requests. Cache can be

replicated at all the servers in the web cluster, which means that

the data is duplicated at all the servers. Another implementation

can be division of the data among the servers in the web

clusters. To improve the performance of such applications, we

have already presented a Distributed Hash-Based Database

Caching (DHBDC) [18]. However, the disadvantage of DHBDC

is that, before using this scheme, the application must be

modified to access the data from the cache. We provide solution

to this dependency problem.

In this paper, a new Dependency Free Distributed Database

Caching (DFDDC) strategy is presented for the multitier web

applications and web services. Section 2 discusses the problem

addressed in the paper. Section 3 presents proposed solution.

The experimentation and results are described in Section 4.

After discussion of related work in Section 5, Section 6 presents

concluding remark and future directions.

2. PROBLEM ADDRESSED
The multitier applications divide the responsibility of the web

applications into multiple layer called tiers. Each tier is handling

a single task. This will improve the performance of each tier,

thereby increasing the performance of overall web application.

However, this division introduces a new problem related to

network delay. The database caching at some stage can reduce

the actual database access to certain large extent. The database

caching imposes several challenges for successful

implementation. Most significant challenges are data

invalidation, data expiration, caching granularity, data selection

for caching and the location to store the cache.

The data invalidation means the freshness and consistency of the

data. Data expiration means purging of unnecessary data from

cache memory either based on aging or using some data

replacement algorithm. Caching granularity refers to providing

different level of caching the data e.g. option to cache complete

database table or caching of selected rows and columns of the

table. Data selection involves the selection of the data to be

cached so that the caching achieves high cache hit rate. The

location of the cache is important for the data privacy and

security. Proper location of caching will affect the performance

of the entire web application. The database is accessed by the

business logic stored at application server. Therefore, the

database caching can be stored at application server. If request

processing does not involve complex business logic then

database caching can also be performed at web server level for

improved response time. There are several alternatives to the

database cache. These are hardware cache available with CPU

and caching provided by database venders. However, these

alternatives are having limited size for data storage, while

multitier web applications require large spaces for caching.

The main memory databases (MMDB) are scalable than

hardware cache and faster solution to the caching provided by

database venders. MMDB requires efficient data structure to

store large set of data required by multitier web applications.

The hash table is used for storing the data in the main memory.

If the data set is too large then a single hash table may become

bottleneck. Distributed main memory database (DMMDB) can

be used if the dataset is large and highly demanding to avoid

single point of failure and bottleneck problems. The DMMDB

keeps the caching records at more than one node in either

replicated or division mode. DMMDB requires efficient request-

to-server mapping mechanism for better response time.

The caching strategy should be implemented in such a manner

that its existence is transparent from the application program and

the databases. This can be achieved by modifying the database

connectivity driver, in a manner that it first searches the cache

for the desired data and if there is a cache miss than actual

database is searched. As the database connectivity driver is

modified, there is no requirement of modifying application

program.

3. THE SOLUTION: DEPENDENCY FREE

DISTRIBUTED DATABASE CACHING
The Dependency Free Distributed Database Caching (DFDDC)

is presented here as a solution to the problems discussed in the

section 2. This solution is implemented using Java based

technologies as a prototype. However, the solution can be

extended to incorporate all the technologies. This is a generic

Web Browser/ Web Service Client

Web Server

Internet

Application Server

Database Server

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

29

caching policy that is able to work for any application and can

be configured for any database. The larger hash tables are used

as database caching mechanism. The hash table is distributed in

a server cluster. Here, both the replicated and non replicated

models are implemented for data caching where user may select

any option as configuration parameter. Centralized caching

control is implemented for efficient and better management of

the caching [16].

In replication model, the central controller manages the load

distribution among the cache servers. In non-replicated model,

all caching items are equally divided among the candidate

servers. The central controller manages a distributed hash table

(DHT) for the mapping of data item to the server containing the

cached items [4]. The DFDDC is integrated with a newly

developed custom JDBC driver. The custom JDBC driver is

implemented so that the existing application program remains

unchanged. This JDBC driver connects directly to the cache

cluster instead of connecting to the database. If the desired data

is not available in the cache, the data is fetched from the

database. The JDBC driver also contains the centralized

controller of the cache.

Architecture of the DFDDC is depicted in Figure 2. The client

request is sent to the frontend server. The request is then

transferred to the application server. The application deployed

on the server uses the JDBC driver. This driver is replaced with

a newly developed custom JDBC driver. This driver uses DHT

to determine the cache node possibly having the data. The cache

lookup is performed at the cache node. If it is cache-hit, the

request is fulfilled from the cache. If cache lookup is cache-miss

then the actual database is used to fetch the requested data and

the cache is updated with the data. If the cache is full then, the

least recently used (LRU) algorithm is used for the cache item

replacement otherwise the data is updated in the cache itself [8].

The data expiration is also implemented based on the age or

Time-to-live (TTL) and the idle time.

The data update request is fulfilled from the cache level i.e. all

the updates are first performed at cache level and later on a

synchronization process is executed to finally update the

database. An update buffer is maintained for keeping the track

of update operation. The synchronization process is executed

periodically as well as triggered when the update buffer is full.

In this manner, no explicit data invalidation is required in the

DFDDC and data consistency and freshness is maintained. All

this is effectively manageable because of centralized cache

management.

3.1 ALGORITHM OF DFDDC
The algorithm of the DFDDC is presented in this subsection.

The user requests are received by application server and the

deployed application forwards this request to the custom JDBC

driver. DFDDC is implemented in the custom driver, that works

as follows:

Algorithm

1. The custom driver with DFDDC, receive the request

from the application server. Go To step 2 if the

request is for data searching and. if it is update

request, go to step 3.

2. Perform the following steps

a. Determine the cache server having the requested

data using DHT.

b. Prepare the request and retrieve the data from

cache server, if data is not available in cache

then cache retrieves the data from database.

c. Send back the data to the application.

d. Update the cache to include the newly fetched

data for future requests.

3. Perform the following steps

a. Determine the cache server having the requested

data using DHT.

b. Send the update request to cache server.

c. Cache server locally updates the data. The final

update will be sent to actual database either

periodically or when buffer is full of updates.

d. If the data is not available in the cache than

actual database is modified and the updated data

is retrieved in the cache.

End of the Algorithm

4. EXPERIMENTAIONS AND ANALYSIS

OF RESULTS
Extensive experimentations are performed to test the validity

and practicality of proposed approach. The experiments are

performed using open source software. The MySQL database is

used along with JEE, Apache web server and Apache Tomcat

application server [10, 5, 2, 1]. The requests are generated using

a load testing tool named as Apache JMeter [7]. Following two

subsections describe the experimental setup and analysis of the

results obtained.

4.1 EXPERIMENTAL SETUP
The performance of DFDDC is evaluated on the same

experimental setup on which DHBDC was tested. The

experimental setup is created consisting of seven servers.

Separate servers are used as web server, application server and

database server. Remaining four servers are used for building

cache cluster. The cache central controller uses remote method

invocation (RMI) to interact with the servers in cache cluster

[15]. All the servers use RedHat Enterprise Linux Advance

Server 4.0 operating system. Table 1 summarizes the details of

experimental setup.

Table 1. Experimental Setup of Seven Servers

Server Software Hardware

Web Server Apache web

server

IBM server having Intel

dual Quad Core processor

with 4 GB RAM.

Application

Server

Apache Tomcat

+ Custom JDBC

Driver

IBM server having Intel

dual Quad Core processor

with 4 GB RAM.

Database

Server

MySQL

database

IBM server having Intel

dual Quad Core processor

with 8 GB RAM.

Caching

Cluster

(4 Servers)

Java RMI IBM server having Intel

dual Quad Core processor

with 8 GB RAM.

Client

Machines

JMeter HP Desktop having Intel

Core 2 Due, 2.80 GHz

processor with 2GB.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

30

Fig 2: The implementation architecture of DFDDC.

The JMeter is configured to generate requests from 50 different

clients (Threads). Each client will generate 1000 request. Total

50,000 requests are generated for testing. The request to fetch

the details of the order by joining three tables namely Customer,

Order, Order_Line. The searching is performed on the total

1,00,000 orders. Total ten repetition of the same

experimentation are performed. The average processing time of

all the requests generated for an experiment is used in the graph.

The JMeter sends the request to the web server.

The cache is implemented in two ways viz. the distributed and

the standalone cache at application server. In case of distributed

cache four servers are used in the cache cluster. On the other

hand the standalone cache is created at application server only.

A website is tested in this environment. This website is

developed using Servlet and JSP interacting with MySQL

database. However, the custom driver can be used with any

existing databases such as Oracle, SQL server, Derby etc. The

static part of the website is deployed on Apache web server. The

dynamic part along with business logic is deployed on Apache

Tomcat application server. The web site is an online book store

deployed over the web server and the application server. The

database consists of the following five tables:

 Customer: Table having the details of the customers.

 Country: The table contains country and their economy

information.

 Order: The table keeps the details of orders placed by the

customers.

 Order_Line: The table contains the detail of the books

included in the order.

 Author: The table stores information about the authors of

the books.

4.2 ANALYSIS OF RESULTS
The graph in Figure 3 is plotted from the results of the

experiments performed. The graph is plotted between three

points namely DCH-DFDDC, DCH-DHBDC and DCM. The

DCH and DCM represent the values when the distributed cache

is used and data hit (DCH) in cache and data miss in cache

(DCM) is occurred respectively. The DCH is compared for the

two strategies DFDDC and DHBDC. Besides the direct

advantage of wider applicability due to the dependency freedom,

another advantage is in terms of performance that can be

observed from the results. Around 8% performance

enhancement is achieved if it is a cache hit in distributed cache

as compared to DHBDC. The reason of the performance

improvement is the implementation of the custom JDBC driver

along with the centralized cache controller. This integration

reduces the extra overhead of communication between driver

and the cache.

Apache JMeter

Client 1 Client 2 Client 3 Client 4 Client 50

W E B S E R V E R

A P P L I C A T I O N S E R V E R

Database

Server

Apache

Apache Tomcat

C U S T O M J D B C D R I V E R

JAVA RMI Servers

Database Caching

JDBC DRIVER

MySQL / Oracle/

SQL Server/ Other

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

31

Fig 3: Performance comparison of DHBDC and DFDDC.

5. RELATED WORK
There exists a large body of research work on various caching

techniques. However, the focus of this paper is database

caching. Few research work and industrial products are available

to improve the performance of web-based database applications

using database caching. However, most of these databases

caching work mainly focused on the specific databases.

Memcached is among the most popular object caching tool. This

tool uses large hash tables for caching of the objects.

Memcached stores strings and objects from the results of

database calls, library calls and rendering of web pages. There is

no centralized control in Memcached [9].

Oracle Times Ten In-Memory database is also another popular

product providing faster access to the relational databases using

the same programming interface. Time ten improves

performance as all the data is stored in the memory and no disk

based operations are required to access the data. Times ten can

optionally be configured to store checkpoint and logging data to

the disk [12, 17].

Paul and Fei have presented a distributed architecture for

caching with centralized control (DEC3). They have evaluated

this architecture using three parameters namely hit ratio,

response time and the traffic on backbone link. They

demonstrated that the centralized control in this architecture

utilizes the caching resource to improve the above parameters.

However, they have implemented the caching for the web

objects like HTML pages and images [16].

Tolia and Satyanarayanan have implemented hash-based

technique for caching of database results to improve the

response time and throughput of the web applications. They

named the project as Ganesh having two components. The first

component of Ganesh is called Ganesh Java JDBC driver that

maintains an in-memory cache for the previous query result. The

second Ganesh component is a Ganesh proxy that uses original

JDBC driver to connect to database. The proxy is also having

mechanism to detect the similarity in the query results. In this

manner Ganesh do not affect web server, application server and

database server at all [11]. Although Ganesh is hash-based but

this is not the database caching mechanism. It caches the part

response of dynamic web pages.

Larson et al. have developed a mid-tier database caching policy

for Microsoft SQL Server database called MTCache. They

developed this caching policy to improve the response time and

system throughput by sharing some of the load of database

server with the cache servers. MTCache can only work with

Microsoft SQL Server and not with the other databases.

However, the DFDDC is a generic policy that can be configured

for any database [13].

DBCache is another proprietary product developed by IBM for

their DB2 UDB database. This is also a middle-tier database

caching policy [14]. This will support the data access from

cache or database or both in a distributed manner. Times-Ten,

MTCache and DBCache are proprietary products that can only

work with specific databases [3].

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

32

6. CONCLUSION
This paper presents a distributed hash-based database caching

mechanism for multitier web applications and web services.

This is a generic cache policy that can work with any database.

The centralized cache control is implemented for better overall

performance. The database products are having built-in cache

implementation. However, these built-in caching is not a

scalable solution while DFDDC presented here is a scalable

solution with better performance. DFDDC is having better

acceptability in various applications due to the dependency

freedom. Extensive experimentations are performed to test the

validity of the proposed method. In comparison with DHBDC,

around 8% enhancement is observed from the experimentation

performed.

In future, testing of DFDDC on real applications and standard

benchmark Java Middleware Open Benchmarking (JMOB) is

planned [6] to reflect the real-time performance of the proposed

strategy.

7. REFERENCES
[1] Apache Tomcat Application Server,

http://tomcat.apache.org/.

[2] Apache Web Server, http://www.apache.org/.

[3] Bornhövd, C., Altinel, M., Krishnamurthy, S., Mohan, C.,

Pirahesh, H. and Reinwald, B. 2003. DBCache: Middle-tier

Database Caching for Highly Scalable e-Business

Architectures. In Proceedings of ACM SIGMOD

International Conference on Management of Data (San

Diego, California, USA, June, 2003). SIGMOD’03, 662-

662.

[4] Distributed Hash Tables, Available Online at,

http://en.wikipedia.org/wiki/Distributed_hash_table.

[5] Java Enterprise Edition, http://java.sun.com/javaee/.

[6] Java Middleware Open Benchmarking (JMOB),

http://jmob.ow2.org/jvm.html.

[7] JMeter Load Testing Tool, http://jakarta.apache.org/

jmeter/.

[8] Least Recently Used, Available Online at,

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Rece

ntly_Used.

[9] Memcached Distributed Memory Cashing System,

http://memcached.org/.

[10] MySQL Enterprise Server, http://www.mysql.com.

[11] Tolia, N. and Satyanarayanan, M. 2007. No-Compromise

Caching of Dynamic Content from Relational Databases. In

Proceedings of 16th International World Wide Web

Conference (Banff, Canada, May 2007). WWW’07, 311-

320.

[12] Oracle Times Ten In-Memory Database,

http://www.oracle.com/database/timesten.html.

[13] Larson, P.A., Goldstein, J. and Zhou J. 2004. MTCache:

Transparent Mid-Tier Database Caching in SQL Server. In

Proceedings of 20th International Conference on Data

Engineering (Boston, Mar-Apr 2004). ICDE’04, 177-189.

[14] Luo, Q., Krishnamurthy, S., Mohan, C., Woo, H., Pirahesh,

H., Lindsay B. and Naughton, J. 2002. Middle-tier

Database Caching for e-Business. In Proceedings of ACM

SIGMOD International Conference on Management of

Data, (Madison,WI, Jun 2002). SIGMOD’02, 600-611.

[15] Remote Method Invocation, http://java.sun.com/javase/

technologies/core/basic/rmi/index.jsp.

[16] Paul, S., and Fei, Z. 2001. Distributed Caching with

Centralized Control. Computer Communications, Elsevier

Press. 24, 2 (Feb 2001), 256-268.

[17] TimesTen Team. 2002 Mid-Tier Caching: The TimesTen

Approach. In Proceedings of ACM SIGMOD International

Conference on Management of Data (Madison,WI, Jun

2002), SIGMOD’02, 588-593.

[18] Mehta, H., Kanungo, P. and Chandwani M. 2011.

Distributed Database Caching for Web Applications and

Web Services. Accepted in ACM International Conference

and Workshop on Emerging Trends and Technology

(Mumbai, February 2011). ICWET 2011, 510-515.

http://www.sciencedirect.com/science/journal/01403664
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235624%232001%23999759997%23552835%23FLA%23&_cdi=5624&_pubType=J&view=c&_auth=y&_acct=C000057040&_version=1&_urlVersion=0&_userid=2352906&md5=90b07445f2c394b8875a743553655109

